You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.8 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """crnn training"""
  16. import os
  17. import argparse
  18. import ast
  19. import mindspore.nn as nn
  20. from mindspore import context
  21. from mindspore.common import set_seed
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.nn.wrap import WithLossCell
  25. from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
  26. from mindspore.communication.management import init, get_group_size, get_rank
  27. from src.loss import CTCLoss
  28. from src.dataset import create_dataset
  29. from src.crnn import crnn
  30. from src.crnn_for_train import TrainOneStepCellWithGradClip
  31. from src.metric import CRNNAccuracy
  32. from src.eval_callback import EvalCallBack
  33. set_seed(1)
  34. parser = argparse.ArgumentParser(description="crnn training")
  35. parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
  36. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
  37. parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend'],
  38. help='Running platform, only support Ascend now. Default is Ascend.')
  39. parser.add_argument('--model', type=str, default='lowercase', help="Model type, default is lowercase")
  40. parser.add_argument('--dataset', type=str, default='synth', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
  41. parser.add_argument('--eval_dataset', type=str, default='svt', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
  42. parser.add_argument('--eval_dataset_path', type=str, default=None, help='Dataset path, default is None')
  43. parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
  44. help="Run evaluation when training, default is False.")
  45. parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
  46. help="Save best checkpoint when run_eval is True, default is True.")
  47. parser.add_argument("--eval_start_epoch", type=int, default=5,
  48. help="Evaluation start epoch when run_eval is True, default is 5.")
  49. parser.add_argument("--eval_interval", type=int, default=5,
  50. help="Evaluation interval when run_eval is True, default is 5.")
  51. parser.set_defaults(run_distribute=False)
  52. args_opt = parser.parse_args()
  53. if args_opt.model == 'lowercase':
  54. from src.config import config1 as config
  55. else:
  56. from src.config import config2 as config
  57. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  58. if args_opt.platform == 'Ascend':
  59. device_id = int(os.getenv('DEVICE_ID'))
  60. context.set_context(device_id=device_id)
  61. def apply_eval(eval_param):
  62. evaluation_model = eval_param["model"]
  63. eval_ds = eval_param["dataset"]
  64. metrics_name = eval_param["metrics_name"]
  65. res = evaluation_model.eval(eval_ds)
  66. return res[metrics_name]
  67. if __name__ == '__main__':
  68. lr_scale = 1
  69. if args_opt.run_distribute:
  70. if args_opt.platform == 'Ascend':
  71. init()
  72. lr_scale = 1
  73. device_num = int(os.environ.get("RANK_SIZE"))
  74. rank = int(os.environ.get("RANK_ID"))
  75. else:
  76. init()
  77. lr_scale = 1
  78. device_num = get_group_size()
  79. rank = get_rank()
  80. context.reset_auto_parallel_context()
  81. context.set_auto_parallel_context(device_num=device_num,
  82. parallel_mode=ParallelMode.DATA_PARALLEL,
  83. gradients_mean=True)
  84. else:
  85. device_num = 1
  86. rank = 0
  87. max_text_length = config.max_text_length
  88. # create dataset
  89. dataset = create_dataset(name=args_opt.dataset, dataset_path=args_opt.dataset_path, batch_size=config.batch_size,
  90. num_shards=device_num, shard_id=rank, config=config)
  91. step_size = dataset.get_dataset_size()
  92. # define lr
  93. lr_init = config.learning_rate
  94. lr = nn.dynamic_lr.cosine_decay_lr(0.0, lr_init, config.epoch_size * step_size, step_size, config.epoch_size)
  95. loss = CTCLoss(max_sequence_length=config.num_step,
  96. max_label_length=max_text_length,
  97. batch_size=config.batch_size)
  98. net = crnn(config)
  99. opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, nesterov=config.nesterov)
  100. net_with_loss = WithLossCell(net, loss)
  101. net_with_grads = TrainOneStepCellWithGradClip(net_with_loss, opt).set_train()
  102. # define model
  103. model = Model(net_with_grads)
  104. # define callbacks
  105. callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
  106. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
  107. if args_opt.run_eval:
  108. if args_opt.eval_dataset_path is None or (not os.path.isdir(args_opt.eval_dataset_path)):
  109. raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
  110. eval_dataset = create_dataset(name=args_opt.eval_dataset,
  111. dataset_path=args_opt.eval_dataset_path,
  112. batch_size=config.batch_size,
  113. is_training=False,
  114. config=config)
  115. eval_model = Model(net, loss, metrics={'CRNNAccuracy': CRNNAccuracy(config)})
  116. eval_param_dict = {"model": eval_model, "dataset": eval_dataset, "metrics_name": "CRNNAccuracy"}
  117. eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
  118. eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
  119. ckpt_directory=save_ckpt_path, besk_ckpt_name="best_acc.ckpt",
  120. metrics_name="acc")
  121. callbacks += [eval_cb]
  122. if config.save_checkpoint and rank == 0:
  123. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  124. keep_checkpoint_max=config.keep_checkpoint_max)
  125. ckpt_cb = ModelCheckpoint(prefix="crnn", directory=save_ckpt_path, config=config_ck)
  126. callbacks.append(ckpt_cb)
  127. model.train(config.epoch_size, dataset, callbacks=callbacks)