|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """crnn training"""
- import os
- import argparse
- import ast
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.common import set_seed
- from mindspore.train.model import Model
- from mindspore.context import ParallelMode
- from mindspore.nn.wrap import WithLossCell
- from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
- from mindspore.communication.management import init, get_group_size, get_rank
-
- from src.loss import CTCLoss
- from src.dataset import create_dataset
- from src.crnn import crnn
- from src.crnn_for_train import TrainOneStepCellWithGradClip
- from src.metric import CRNNAccuracy
- from src.eval_callback import EvalCallBack
- set_seed(1)
-
- parser = argparse.ArgumentParser(description="crnn training")
- parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
- parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend'],
- help='Running platform, only support Ascend now. Default is Ascend.')
- parser.add_argument('--model', type=str, default='lowercase', help="Model type, default is lowercase")
- parser.add_argument('--dataset', type=str, default='synth', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
- parser.add_argument('--eval_dataset', type=str, default='svt', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
- parser.add_argument('--eval_dataset_path', type=str, default=None, help='Dataset path, default is None')
- parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
- help="Run evaluation when training, default is False.")
- parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
- help="Save best checkpoint when run_eval is True, default is True.")
- parser.add_argument("--eval_start_epoch", type=int, default=5,
- help="Evaluation start epoch when run_eval is True, default is 5.")
- parser.add_argument("--eval_interval", type=int, default=5,
- help="Evaluation interval when run_eval is True, default is 5.")
- parser.set_defaults(run_distribute=False)
- args_opt = parser.parse_args()
-
- if args_opt.model == 'lowercase':
- from src.config import config1 as config
- else:
- from src.config import config2 as config
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
- if args_opt.platform == 'Ascend':
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
- def apply_eval(eval_param):
- evaluation_model = eval_param["model"]
- eval_ds = eval_param["dataset"]
- metrics_name = eval_param["metrics_name"]
- res = evaluation_model.eval(eval_ds)
- return res[metrics_name]
-
- if __name__ == '__main__':
- lr_scale = 1
- if args_opt.run_distribute:
- if args_opt.platform == 'Ascend':
- init()
- lr_scale = 1
- device_num = int(os.environ.get("RANK_SIZE"))
- rank = int(os.environ.get("RANK_ID"))
- else:
- init()
- lr_scale = 1
- device_num = get_group_size()
- rank = get_rank()
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- else:
- device_num = 1
- rank = 0
-
- max_text_length = config.max_text_length
- # create dataset
- dataset = create_dataset(name=args_opt.dataset, dataset_path=args_opt.dataset_path, batch_size=config.batch_size,
- num_shards=device_num, shard_id=rank, config=config)
- step_size = dataset.get_dataset_size()
- # define lr
- lr_init = config.learning_rate
- lr = nn.dynamic_lr.cosine_decay_lr(0.0, lr_init, config.epoch_size * step_size, step_size, config.epoch_size)
- loss = CTCLoss(max_sequence_length=config.num_step,
- max_label_length=max_text_length,
- batch_size=config.batch_size)
- net = crnn(config)
- opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, nesterov=config.nesterov)
-
- net_with_loss = WithLossCell(net, loss)
- net_with_grads = TrainOneStepCellWithGradClip(net_with_loss, opt).set_train()
- # define model
- model = Model(net_with_grads)
- # define callbacks
- callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
- save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
- if args_opt.run_eval:
- if args_opt.eval_dataset_path is None or (not os.path.isdir(args_opt.eval_dataset_path)):
- raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
- eval_dataset = create_dataset(name=args_opt.eval_dataset,
- dataset_path=args_opt.eval_dataset_path,
- batch_size=config.batch_size,
- is_training=False,
- config=config)
- eval_model = Model(net, loss, metrics={'CRNNAccuracy': CRNNAccuracy(config)})
- eval_param_dict = {"model": eval_model, "dataset": eval_dataset, "metrics_name": "CRNNAccuracy"}
- eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
- eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
- ckpt_directory=save_ckpt_path, besk_ckpt_name="best_acc.ckpt",
- metrics_name="acc")
- callbacks += [eval_cb]
- if config.save_checkpoint and rank == 0:
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="crnn", directory=save_ckpt_path, config=config_ck)
- callbacks.append(ckpt_cb)
- model.train(config.epoch_size, dataset, callbacks=callbacks)
|