You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 3.1 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Warpctc evaluation"""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore.common import set_seed
  20. from mindspore.train.model import Model
  21. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  22. from src.loss import CTCLoss
  23. from src.dataset import create_dataset
  24. from src.crnn import crnn
  25. from src.metric import CRNNAccuracy
  26. set_seed(1)
  27. parser = argparse.ArgumentParser(description="CRNN eval")
  28. parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.")
  29. parser.add_argument("--checkpoint_path", type=str, default=None, help="checkpoint file path, default is None")
  30. parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  31. help='Running platform, choose from Ascend, GPU, and default is Ascend.')
  32. parser.add_argument('--model', type=str, default='lowcase', help="Model type, default is uppercase")
  33. parser.add_argument('--dataset', type=str, default='synth', choices=['synth', 'ic03', 'ic13', 'svt', 'iiit5k'])
  34. args_opt = parser.parse_args()
  35. if args_opt.model == 'lowcase':
  36. from src.config import config1 as config
  37. else:
  38. from src.config import config2 as config
  39. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  40. if args_opt.platform == 'Ascend':
  41. device_id = int(os.getenv('DEVICE_ID'))
  42. context.set_context(device_id=device_id)
  43. if __name__ == '__main__':
  44. config.batch_size = 1
  45. max_text_length = config.max_text_length
  46. input_size = config.input_size
  47. # create dataset
  48. dataset = create_dataset(name=args_opt.dataset,
  49. dataset_path=args_opt.dataset_path,
  50. batch_size=config.batch_size,
  51. is_training=False,
  52. config=config)
  53. step_size = dataset.get_dataset_size()
  54. loss = CTCLoss(max_sequence_length=config.num_step,
  55. max_label_length=max_text_length,
  56. batch_size=config.batch_size)
  57. net = crnn(config)
  58. # load checkpoint
  59. param_dict = load_checkpoint(args_opt.checkpoint_path)
  60. load_param_into_net(net, param_dict)
  61. net.set_train(False)
  62. # define model
  63. model = Model(net, loss_fn=loss, metrics={'CRNNAccuracy': CRNNAccuracy(config)})
  64. # start evaluation
  65. res = model.eval(dataset, dataset_sink_mode=args_opt.platform == 'Ascend')
  66. print("result:", res, flush=True)