|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Contents
-
- - [AlexNet Description](#alexnet-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- ## [AlexNet Description](#contents)
-
- AlexNet was proposed in 2012, one of the most influential neural networks. It got big success in ImageNet Dataset recognition than other models.
-
- [Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf): Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep ConvolutionalNeural Networks. *Advances In Neural Information Processing Systems*. 2012.
-
- ## [Model Architecture](#contents)
-
- AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
-
- ## [Dataset](#contents)
-
- Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
-
- Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
-
- - Dataset size:175M,60,000 32*32 colorful images in 10 classes
- - Train:146M,50,000 images
- - Test:29.3M,10,000 images
- - Data format:binary files
- - Note:Data will be processed in dataset.py
- - Download the dataset, the directory structure is as follows:
-
- ```bash
- ├─cifar-10-batches-bin
- │
- └─cifar-10-verify-bin
- ```
-
- ## [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- ## [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- ```python
- # enter script dir, train AlexNet
- sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
- # enter script dir, evaluate AlexNet
- sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
- ```
-
- ## [Script Description](#contents)
-
- ### [Script and Sample Code](#contents)
-
- ```bash
- ├── cv
- ├── alexnet
- ├── README.md // descriptions about alexnet
- ├── requirements.txt // package needed
- ├── scripts
- │ ├──run_standalone_train_gpu.sh // train in gpu
- │ ├──run_standalone_train_ascend.sh // train in ascend
- │ ├──run_standalone_eval_gpu.sh // evaluate in gpu
- │ ├──run_standalone_eval_ascend.sh // evaluate in ascend
- ├── src
- │ ├──dataset.py // creating dataset
- │ ├──alexnet.py // alexnet architecture
- │ ├──config.py // parameter configuration
- ├── train.py // training script
- ├── eval.py // evaluation script
- ```
-
- ### [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py as follows:
-
- --data_path: The absolute full path to the train and evaluation datasets.
- --epoch_size: Total training epochs.
- --batch_size: Training batch size.
- --image_height: Image height used as input to the model.
- --image_width: Image width used as input the model.
- --device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
- --checkpoint_path: The absolute full path to the checkpoint file saved after training.
- --data_path: Path where the dataset is saved
- ```
-
- ### [Training Process](#contents)
-
- #### Training
-
- - running on Ascend
-
- ```bash
- python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log 2>&1 &
- # or enter script dir, and run the script
- sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
- ```
-
- After training, the loss value will be achieved as follows:
-
- ```bash
- # grep "loss is " log
- epoch: 1 step: 1, loss is 2.2791853
- ...
- epoch: 1 step: 1536, loss is 1.9366643
- epoch: 1 step: 1537, loss is 1.6983616
- epoch: 1 step: 1538, loss is 1.0221305
- ...
- ```
-
- The model checkpoint will be saved in the current directory.
-
- - running on GPU
-
- ```bash
- python train.py --device_target "GPU" --data_path cifar-10-batches-bin --ckpt_path ckpt > log 2>&1 &
- # or enter script dir, and run the script
- sh run_standalone_train_for_gpu.sh cifar-10-batches-bin ckpt
- ```
-
- After training, the loss value will be achieved as follows:
-
- ```bash
- # grep "loss is " log
- epoch: 1 step: 1, loss is 2.3125906
- ...
- epoch: 30 step: 1560, loss is 0.6687547
- epoch: 30 step: 1561, loss is 0.20055409
- epoch: 30 step: 1561, loss is 0.103845775
- ```
-
- ### [Evaluation Process](#contents)
-
- #### Evaluation
-
- Before running the command below, please check the checkpoint path used for evaluation.
-
- - running on Ascend
-
- ```bash
- python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > eval_log.txt 2>&1 &
- # or enter script dir, and run the script
- sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
- ```
-
- You can view the results through the file "eval_log". The accuracy of the test dataset will be as follows:
-
- ```bash
- # grep "Accuracy: " eval_log
- 'Accuracy': 0.8832
- ```
-
- - running on GPU
-
- ```bash
- python eval.py --device_target "GPU" --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-30_1562.ckpt > eval_log 2>&1 &
- # or enter script dir, and run the script
- sh run_standalone_eval_for_gpu.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-30_1562.ckpt
- ```
-
- You can view the results through the file "eval_log". The accuracy of the test dataset will be as follows:
-
- ```bash
- # grep "Accuracy: " eval_log
- 'Accuracy': 0.88512
- ```
-
- ## [Model Description](#contents)
-
- ### [Performance](#contents)
-
- #### Evaluation Performance
-
- | Parameters | Ascend | GPU |
- | -------------------------- | ------------------------------------------------------------| -------------------------------------------------|
- | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
- | uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) |
- | MindSpore Version | 1.0.0 | 0.7.0-beta |
- | Dataset | CIFAR-10 | CIFAR-10 |
- | Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
- | Optimizer | Momentum | Momentum |
- | Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
- | outputs | probability | probability |
- | Loss | 0.08 | 0.01 |
- | Speed | 7.3 ms/step | 16.8 ms/step |
- | Total time | 6 mins | 14 mins |
- | Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) |
- | Scripts | [AlexNet Script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet) | [AlexNet Script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet) |
-
- ## [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside ```create_dataset``` function.
-
- ## [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|