|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- # Contents
-
- - [DeepFM Description](#deepfm-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Distributed Training](#distributed-training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
-
- # [DeepFM Description](#contents)
-
- Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture.
-
- [Paper](https://arxiv.org/abs/1703.04247): Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
-
- # [Model Architecture](#contents)
-
- DeepFM consists of two components. The FM component is a factorization machine, which is proposed in to learn feature interactions for recommendation. The deep component is a feed-forward neural network, which is used to learn high-order feature interactions.
- The FM and deep component share the same input raw feature vector, which enables DeepFM to learn low- and high-order feature interactions simultaneously from the input raw features.
-
- # [Dataset](#contents)
-
- - [1] A dataset used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
-
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
-
-
- # [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation as follows:
-
- - runing on Ascend
-
- ```
- # run training example
- python train.py \
- --dataset_path='dataset/train' \
- --ckpt_path='./checkpoint' \
- --eval_file_name='auc.log' \
- --loss_file_name='loss.log' \
- --device_target='Ascend' \
- --do_eval=True > ms_log/output.log 2>&1 &
-
- # run distributed training example
- sh scripts/run_distribute_train.sh 8 /dataset_path /rank_table_8p.json
-
- # run evaluation example
- python eval.py \
- --dataset_path='dataset/test' \
- --checkpoint_path='./checkpoint/deepfm.ckpt' \
- --device_target='Ascend' > ms_log/eval_output.log 2>&1 &
- OR
- sh scripts/run_eval.sh 0 Ascend /dataset_path /checkpoint_path/deepfm.ckpt
- ```
-
- For distributed training, a hccl configuration file with JSON format needs to be created in advance.
-
- Please follow the instructions in the link below:
-
- https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
-
- - running on GPU
-
- For running on GPU, please change `device_target` from `Ascend` to `GPU` in configuration file src/config.py
-
- ```
- # run training example
- python train.py \
- --dataset_path='dataset/train' \
- --ckpt_path='./checkpoint' \
- --eval_file_name='auc.log' \
- --loss_file_name='loss.log' \
- --device_target='GPU' \
- --do_eval=True > ms_log/output.log 2>&1 &
-
- # run distributed training example
- sh scripts/run_distribute_train.sh 8 /dataset_path
-
- # run evaluation example
- python eval.py \
- --dataset_path='dataset/test' \
- --checkpoint_path='./checkpoint/deepfm.ckpt' \
- --device_target='GPU' > ms_log/eval_output.log 2>&1 &
- OR
- sh scripts/run_eval.sh 0 GPU /dataset_path /checkpoint_path/deepfm.ckpt
- ```
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```
- .
- └─deepfm
- ├─README.md
- ├─mindspore_hub_conf.md # config for mindspore hub
- ├─scripts
- ├─run_standalone_train.sh # launch standalone training(1p) in Ascend or GPU
- ├─run_distribute_train.sh # launch distributed training(8p) in Ascend
- ├─run_distribute_train_gpu.sh # launch distributed training(8p) in GPU
- └─run_eval.sh # launch evaluating in Ascend or GPU
- ├─src
- ├─__init__.py # python init file
- ├─config.py # parameter configuration
- ├─callback.py # define callback function
- ├─deepfm.py # deepfm network
- ├─dataset.py # create dataset for deepfm
- ├─eval.py # eval net
- └─train.py # train net
- ```
-
- ## [Script Parameters](#contents)
-
- Parameters for both training and evaluation can be set in config.py
-
- - train parameters
- ```
- optional arguments:
- -h, --help show this help message and exit
- --dataset_path DATASET_PATH
- Dataset path
- --ckpt_path CKPT_PATH
- Checkpoint path
- --eval_file_name EVAL_FILE_NAME
- Auc log file path. Default: "./auc.log"
- --loss_file_name LOSS_FILE_NAME
- Loss log file path. Default: "./loss.log"
- --do_eval DO_EVAL Do evaluation or not. Default: True
- --device_target DEVICE_TARGET
- Ascend or GPU. Default: Ascend
- ```
- - eval parameters
- ```
- optional arguments:
- -h, --help show this help message and exit
- --checkpoint_path CHECKPOINT_PATH
- Checkpoint file path
- --dataset_path DATASET_PATH
- Dataset path
- --device_target DEVICE_TARGET
- Ascend or GPU. Default: Ascend
- ```
-
-
- ## [Training Process](#contents)
-
- ### Training
-
- - running on Ascend
-
- ```
- python train.py \
- --dataset_path='dataset/train' \
- --ckpt_path='./checkpoint' \
- --eval_file_name='auc.log' \
- --loss_file_name='loss.log' \
- --device_target='Ascend' \
- --do_eval=True > ms_log/output.log 2>&1 &
- ```
-
- The python command above will run in the background, you can view the results through the file `ms_log/output.log`.
-
- After training, you'll get some checkpoint files under `./checkpoint` folder by default. The loss value are saved in loss.log file.
-
- ```
- 2020-05-27 15:26:29 epoch: 1 step: 41257, loss is 0.498953253030777
- 2020-05-27 15:32:32 epoch: 2 step: 41257, loss is 0.45545706152915955
- ...
- ```
-
- The model checkpoint will be saved in the current directory.
-
- - running on GPU
- To do.
-
- ### Distributed Training
-
- - running on Ascend
-
- ```
- sh scripts/run_distribute_train.sh 8 /dataset_path /rank_table_8p.json
- ```
-
- The above shell script will run distribute training in the background. You can view the results through the file `log[X]/output.log`. The loss value are saved in loss.log file.
-
-
- - running on GPU
- To do.
-
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation
-
- - evaluation on dataset when running on Ascend
-
- Before running the command below, please check the checkpoint path used for evaluation.
-
- ```
- python eval.py \
- --dataset_path='dataset/test' \
- --checkpoint_path='./checkpoint/deepfm.ckpt' \
- --device_target='Ascend' > ms_log/eval_output.log 2>&1 &
- OR
- sh scripts/run_eval.sh 0 Ascend /dataset_path /checkpoint_path/deepfm.ckpt
- ```
-
- The above python command will run in the background. You can view the results through the file "eval_output.log". The accuracy is saved in auc.log file.
-
- ```
- {'result': {'AUC': 0.8057789065281104, 'eval_time': 35.64779996871948}}
- ```
-
-
- - evaluation on dataset when running on GPU
- To do.
-
-
- # [Model Description](#contents)
- ## [Performance](#contents)
-
- ### Evaluation Performance
-
- | Parameters | Ascend | GPU |
- | -------------------------- | ----------------------------------------------------------- | ---------------------- |
- | Model Version | DeepFM | To do |
- | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G | To do |
- | uploaded Date | 09/15/2020 (month/day/year) | To do |
- | MindSpore Version | 1.0.0 | To do |
- | Dataset | [1] | To do |
- | Training Parameters | epoch=15, batch_size=1000, lr=1e-5 | To do |
- | Optimizer | Adam | To do |
- | Loss Function | Sigmoid Cross Entropy With Logits | To do |
- | outputs | Accuracy | To do |
- | Loss | 0.45 | To do |
- | Speed | 1pc: 8.16 ms/step; | To do |
- | Total time | 1pc: 90 mins; | To do |
- | Parameters (M) | 16.5 | To do |
- | Checkpoint for Fine tuning | 190M (.ckpt file) | To do |
- | Scripts | [deepfm script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/deepfm) | To do |
-
-
- ### Inference Performance
-
- | Parameters | Ascend | GPU |
- | ------------------- | --------------------------- | --------------------------- |
- | Model Version | DeepFM | To do |
- | Resource | Ascend 910 | To do |
- | Uploaded Date | 05/27/2020 (month/day/year) | To do |
- | MindSpore Version | 0.3.0-alpha | To do |
- | Dataset | [1] | To do |
- | batch_size | 1000 | To do |
- | outputs | accuracy | To do |
- | Accuracy | 1pc: 80.55%; | To do |
- | Model for inference | 190M (.ckpt file) | To do |
-
-
- # [Description of Random Situation](#contents)
-
- We set the random seed before training in train.py.
-
- # [ModelZoo Homepage](#contents)
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
-
|