You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. BGCF training script.
  17. """
  18. import os
  19. import time
  20. from mindspore import Tensor
  21. import mindspore.context as context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.train.serialization import save_checkpoint
  24. from src.bgcf import BGCF
  25. from src.config import parser_args
  26. from src.utils import convert_item_id
  27. from src.callback import TrainBGCF
  28. from src.dataset import load_graph, create_dataset
  29. def train():
  30. """Train"""
  31. num_user = train_graph.graph_info()["node_num"][0]
  32. num_item = train_graph.graph_info()["node_num"][1]
  33. num_pairs = train_graph.graph_info()['edge_num'][0]
  34. bgcfnet = BGCF([parser.input_dim, num_user, num_item],
  35. parser.embedded_dimension,
  36. parser.activation,
  37. parser.neighbor_dropout,
  38. num_user,
  39. num_item,
  40. parser.input_dim)
  41. train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate,
  42. parser.epsilon, parser.dist_reg)
  43. train_net.set_train(True)
  44. itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True)
  45. num_iter = int(num_pairs / parser.batch_pairs)
  46. for _epoch in range(1, parser.num_epoch + 1):
  47. epoch_start = time.time()
  48. iter_num = 1
  49. for data in itr:
  50. u_id = Tensor(data["users"], mstype.int32)
  51. pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32)
  52. neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32)
  53. pos_users = Tensor(data["pos_users"], mstype.int32)
  54. pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32)
  55. u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32)
  56. u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32)
  57. u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32)
  58. i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32)
  59. i_neighs = Tensor(data["i_neighs"], mstype.int32)
  60. i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32)
  61. neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32)
  62. neg_neighs = Tensor(data["neg_neighs"], mstype.int32)
  63. neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32)
  64. train_loss = train_net(u_id,
  65. pos_item_id,
  66. neg_item_id,
  67. pos_users,
  68. pos_items,
  69. u_group_nodes,
  70. u_neighs,
  71. u_gnew_neighs,
  72. i_group_nodes,
  73. i_neighs,
  74. i_gnew_neighs,
  75. neg_group_nodes,
  76. neg_neighs,
  77. neg_gnew_neighs)
  78. if iter_num == num_iter:
  79. print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num,
  80. 'loss',
  81. '{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start))
  82. iter_num += 1
  83. if _epoch % parser.eval_interval == 0:
  84. save_checkpoint(bgcfnet, parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch))
  85. if __name__ == "__main__":
  86. context.set_context(mode=context.GRAPH_MODE,
  87. device_target="Ascend",
  88. save_graphs=False)
  89. parser = parser_args()
  90. os.environ['DEVICE_ID'] = parser.device
  91. train_graph, _, sampled_graph_list = load_graph(parser.datapath)
  92. train_ds = create_dataset(train_graph, sampled_graph_list, parser.workers, batch_size=parser.batch_pairs,
  93. num_samples=parser.raw_neighs, num_bgcn_neigh=parser.gnew_neighs, num_neg=parser.num_neg)
  94. train()