You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import os
  17. import time
  18. import argparse
  19. import random
  20. import numpy as np
  21. from dataset import create_dataset
  22. from lr_generator import get_lr
  23. from config import config
  24. from mindspore import context
  25. from mindspore import Tensor
  26. from mindspore import nn
  27. from mindspore.model_zoo.mobilenet import mobilenet_v2
  28. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  29. from mindspore.nn.optim.momentum import Momentum
  30. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  31. from mindspore.nn.loss.loss import _Loss
  32. from mindspore.ops import operations as P
  33. from mindspore.ops import functional as F
  34. from mindspore.common import dtype as mstype
  35. from mindspore.train.model import Model, ParallelMode
  36. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
  37. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  38. import mindspore.dataset.engine as de
  39. from mindspore.communication.management import init
  40. random.seed(1)
  41. np.random.seed(1)
  42. de.config.set_seed(1)
  43. parser = argparse.ArgumentParser(description='Image classification')
  44. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  45. args_opt = parser.parse_args()
  46. device_id = int(os.getenv('DEVICE_ID'))
  47. rank_id = int(os.getenv('RANK_ID'))
  48. rank_size = int(os.getenv('RANK_SIZE'))
  49. run_distribute = rank_size > 1
  50. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
  51. context.set_context(enable_task_sink=True)
  52. context.set_context(enable_loop_sink=True)
  53. context.set_context(enable_mem_reuse=True)
  54. class CrossEntropyWithLabelSmooth(_Loss):
  55. """
  56. CrossEntropyWith LabelSmooth.
  57. Args:
  58. smooth_factor (float): smooth factor, default=0.
  59. num_classes (int): num classes
  60. Returns:
  61. None.
  62. Examples:
  63. >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
  64. """
  65. def __init__(self, smooth_factor=0., num_classes=1000):
  66. super(CrossEntropyWithLabelSmooth, self).__init__()
  67. self.onehot = P.OneHot()
  68. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  69. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  70. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  71. self.mean = P.ReduceMean(False)
  72. self.cast = P.Cast()
  73. def construct(self, logit, label):
  74. one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value)
  75. out_loss = self.ce(logit, one_hot_label)
  76. out_loss = self.mean(out_loss, 0)
  77. return out_loss
  78. class Monitor(Callback):
  79. """
  80. Monitor loss and time.
  81. Args:
  82. lr_init (numpy array): train lr
  83. Returns:
  84. None
  85. Examples:
  86. >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
  87. """
  88. def __init__(self, lr_init=None):
  89. super(Monitor, self).__init__()
  90. self.lr_init = lr_init
  91. self.lr_init_len = len(lr_init)
  92. def epoch_begin(self, run_context):
  93. self.losses = []
  94. self.epoch_time = time.time()
  95. def epoch_end(self, run_context):
  96. cb_params = run_context.original_args()
  97. epoch_mseconds = (time.time() - self.epoch_time) * 1000
  98. per_step_mseconds = epoch_mseconds / cb_params.batch_num
  99. print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
  100. per_step_mseconds,
  101. np.mean(self.losses)
  102. ), flush=True)
  103. def step_begin(self, run_context):
  104. self.step_time = time.time()
  105. def step_end(self, run_context):
  106. cb_params = run_context.original_args()
  107. step_mseconds = (time.time() - self.step_time) * 1000
  108. step_loss = cb_params.net_outputs
  109. if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
  110. step_loss = step_loss[0]
  111. if isinstance(step_loss, Tensor):
  112. step_loss = np.mean(step_loss.asnumpy())
  113. self.losses.append(step_loss)
  114. cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
  115. print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
  116. cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
  117. np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True)
  118. if __name__ == '__main__':
  119. if run_distribute:
  120. context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
  121. parameter_broadcast=True, mirror_mean=True)
  122. auto_parallel_context().set_all_reduce_fusion_split_indices([140])
  123. init()
  124. epoch_size = config.epoch_size
  125. net = mobilenet_v2(num_classes=config.num_classes)
  126. net.add_flags_recursive(fp16=True)
  127. for _, cell in net.cells_and_names():
  128. if isinstance(cell, nn.Dense):
  129. cell.add_flags_recursive(fp32=True)
  130. if config.label_smooth > 0:
  131. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
  132. else:
  133. loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  134. print("train args: ", args_opt, "\ncfg: ", config,
  135. "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  136. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
  137. repeat_num=epoch_size, batch_size=config.batch_size)
  138. step_size = dataset.get_dataset_size()
  139. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  140. lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config.lr,
  141. warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size))
  142. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  143. config.weight_decay, config.loss_scale)
  144. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
  145. cb = None
  146. if rank_id == 0:
  147. cb = [Monitor(lr_init=lr.asnumpy())]
  148. if config.save_checkpoint:
  149. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  150. keep_checkpoint_max=config.keep_checkpoint_max)
  151. ckpt_cb = ModelCheckpoint(prefix="mobilenet", directory=config.save_checkpoint_path, config=config_ck)
  152. cb += [ckpt_cb]
  153. model.train(epoch_size, dataset, callbacks=cb)