|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- create train or eval dataset.
- """
- import os
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- import mindspore.dataset.transforms.c_transforms as C2
- from config import config
-
-
- def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
- """
- create a train or eval dataset
-
- Args:
- dataset_path(string): the path of dataset.
- do_train(bool): whether dataset is used for train or eval.
- repeat_num(int): the repeat times of dataset. Default: 1
- batch_size(int): the batch size of dataset. Default: 32
-
- Returns:
- dataset
- """
- rank_size = int(os.getenv("RANK_SIZE"))
- rank_id = int(os.getenv("RANK_ID"))
-
- if rank_size == 1:
- ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True)
- else:
- ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True,
- num_shards=rank_size, shard_id=rank_id)
-
- resize_height = config.image_height
- resize_width = config.image_width
- rescale = 1.0 / 255.0
- shift = 0.0
- buffer_size = 1000
-
- # define map operations
- decode_op = C.Decode()
- resize_crop_op = C.RandomResizedCrop(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
- horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
-
- resize_op = C.Resize((256, 256))
- center_crop = C.CenterCrop(resize_width)
- rescale_op = C.Rescale(rescale, shift)
- normalize_op = C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- change_swap_op = C.HWC2CHW()
-
- if do_train:
- trans = [decode_op, resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op]
- else:
- trans = [decode_op, resize_op, center_crop, rescale_op, normalize_op, change_swap_op]
-
- type_cast_op = C2.TypeCast(mstype.int32)
-
- ds = ds.map(input_columns="image", operations=trans)
- ds = ds.map(input_columns="label", operations=type_cast_op)
-
- # apply shuffle operations
- ds = ds.shuffle(buffer_size=buffer_size)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
-
- # apply dataset repeat operation
- ds = ds.repeat(repeat_num)
-
- return ds
|