You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_eval.py 3.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore as ms
  17. from mindspore import context, Tensor, Parameter
  18. from mindspore.common.api import _executor
  19. from mindspore.nn import Cell
  20. from mindspore.ops import operations as P
  21. class Net(Cell):
  22. def __init__(self, mul_weight, strategy1=None, strategy2=None):
  23. super().__init__()
  24. self.mul = P.Mul().shard(strategy1)
  25. self.neg = P.Neg().shard(strategy2)
  26. self.mul_weight = Parameter(mul_weight, "w1")
  27. def construct(self, x, b):
  28. out = self.mul(x, self.mul_weight)
  29. out = self.neg(out)
  30. return out
  31. class EvalNet(Cell):
  32. def __init__(self, network, strategy2=None):
  33. super().__init__()
  34. self.network = network
  35. self.relu = P.ReLU().shard(strategy2)
  36. def construct(self, x, b):
  37. out = self.network(x, b)
  38. out1 = self.relu(out)
  39. return out, out1
  40. _x = Tensor(np.ones([64, 64]), dtype=ms.float32)
  41. _w1 = Tensor(np.ones([64, 64]), dtype=ms.float32)
  42. _b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  43. def test_train_and_eval():
  44. context.set_context(save_graphs=False, mode=0)
  45. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16)
  46. strategy1 = ((4, 4), (4, 4))
  47. strategy2 = ((4, 4),)
  48. net = Net(_w1, strategy1, strategy2)
  49. eval_net = EvalNet(net, strategy2=strategy2)
  50. net.set_auto_parallel()
  51. net.set_train()
  52. _executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
  53. eval_net.set_train(mode=False)
  54. eval_net.set_auto_parallel()
  55. _executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
  56. context.reset_auto_parallel_context()
  57. def test_train_and_eval_auto():
  58. context.set_context(save_graphs=False, mode=0)
  59. context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16)
  60. strategy1 = ((4, 4), (4, 4))
  61. strategy2 = ((4, 4),)
  62. net = Net(_w1, strategy1, strategy2)
  63. eval_net = EvalNet(net, strategy2=strategy2)
  64. net.set_auto_parallel()
  65. net.set_train()
  66. _executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
  67. eval_net.set_train(mode=False)
  68. eval_net.set_auto_parallel()
  69. _executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
  70. context.reset_auto_parallel_context()