You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_concat.py 5.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore as ms
  17. from mindspore import context, Tensor, Parameter
  18. from mindspore.common.api import _executor
  19. from mindspore.nn import Cell, TrainOneStepCell, Momentum
  20. from mindspore.ops import operations as P
  21. class Net(Cell):
  22. def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True):
  23. super().__init__()
  24. self.concat = P.Concat(axis=0).shard(strategy1)
  25. if is_parameter:
  26. self.weight = Parameter(weight, "w1")
  27. else:
  28. self.weight = weight
  29. self.mul = P.Mul().shard(strategy2)
  30. self.weight2 = Parameter(weight2, "w2")
  31. def construct(self, x, b):
  32. out = self.concat((self.weight, self.weight2))
  33. out = self.mul(x, out)
  34. return out
  35. class Net2(Cell):
  36. def __init__(self, weight, strategy1=None, strategy2=None, axis=0):
  37. super().__init__()
  38. self.mul = P.Mul().shard(strategy1)
  39. self.concat = P.Concat(axis=axis).shard(strategy2)
  40. self.weight = Parameter(weight, "w")
  41. def construct(self, x, b):
  42. out = self.mul(x, b)
  43. out = self.concat((out, self.weight))
  44. return out
  45. class Net3(Cell):
  46. def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True):
  47. super().__init__()
  48. self.concat = P.Concat(axis=0).shard(strategy1)
  49. if is_parameter:
  50. self.weight = Parameter(weight, "w1")
  51. else:
  52. self.weight = weight
  53. self.mul = P.Mul().shard(strategy2)
  54. self.weight2 = Parameter(weight2, "w2")
  55. self.weight3 = Parameter(weight3, "w3")
  56. def construct(self, x, b):
  57. out = self.concat((self.weight, self.weight2, self.weight3))
  58. out = self.mul(x, out)
  59. return out
  60. _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
  61. _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
  62. _w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32)
  63. _w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32)
  64. _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
  65. w1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
  66. w2 = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
  67. w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
  68. def compile_net(net):
  69. context.set_context(save_graphs=False)
  70. optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
  71. train_net = TrainOneStepCell(net, optimizer)
  72. train_net.set_auto_parallel()
  73. train_net.set_train()
  74. _executor.compile(train_net, _x, _b)
  75. context.reset_auto_parallel_context()
  76. def test_concat_parameter():
  77. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  78. strategy1 = ((1, 4, 2), (1, 4, 2))
  79. strategy2 = ((1, 4, 2), (1, 4, 2))
  80. net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
  81. compile_net(net)
  82. def test_concat_parameter_no_full_split():
  83. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  84. strategy1 = ((1, 2, 2), (1, 2, 2))
  85. strategy2 = ((1, 4, 2), (1, 4, 2))
  86. net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
  87. compile_net(net)
  88. def test_concat_tensor_and_parameter():
  89. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  90. strategy1 = ((1, 2, 2), (1, 2, 2))
  91. strategy2 = ((1, 4, 2), (1, 4, 2))
  92. net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False)
  93. compile_net(net)
  94. def test_concat_output():
  95. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  96. strategy1 = ((2, 2, 2), (2, 2, 2))
  97. strategy2 = ((1, 4, 2), (1, 4, 2))
  98. net = Net2(_w1, strategy1, strategy2)
  99. compile_net(net)
  100. def test_concat_output_no_full_split():
  101. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  102. strategy1 = ((2, 2, 2), (2, 2, 2))
  103. strategy2 = ((1, 2, 2), (1, 2, 2))
  104. net = Net2(_w1, strategy1, strategy2)
  105. compile_net(net)
  106. def test_concat_no_strategy():
  107. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
  108. strategy1 = ((2, 2, 2), (2, 2, 2))
  109. strategy2 = None
  110. net = Net2(_w3, strategy1, strategy2, axis=1)
  111. compile_net(net)
  112. def test_concat_auto_parallel():
  113. context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
  114. net = Net2(_w2)
  115. compile_net(net)
  116. def test_concat_auto_parallel2():
  117. context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
  118. strategy1 = None
  119. strategy2 = None
  120. net = Net2(_w3, strategy1, strategy2, axis=1)
  121. compile_net(net)
  122. def test_concat_auto_parallel_3_tensor():
  123. context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
  124. net = Net3(w1, w2, w3)
  125. compile_net(net)