You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_eager_vision.py 4.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import cv2
  16. import numpy as np
  17. from PIL import Image
  18. import mindspore.dataset.vision.c_transforms as C
  19. from mindspore import log as logger
  20. def test_eager_decode():
  21. img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
  22. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  23. img = C.Decode()(img)
  24. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  25. assert img.shape == (2268, 4032, 3)
  26. def test_eager_resize():
  27. img = cv2.imread("../data/dataset/apple.jpg")
  28. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  29. img = C.Resize(size=(32, 32))(img)
  30. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  31. assert img.shape == (32, 32, 3)
  32. def test_eager_rescale():
  33. img = cv2.imread("../data/dataset/apple.jpg")
  34. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  35. pixel = img[0][0][0]
  36. rescale_factor = 0.5
  37. img = C.Rescale(rescale=rescale_factor, shift=0)(img)
  38. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  39. pixel_rescaled = img[0][0][0]
  40. assert pixel*rescale_factor == pixel_rescaled
  41. def test_eager_normalize():
  42. img = Image.open("../data/dataset/apple.jpg").convert("RGB")
  43. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
  44. pixel = img.getpixel((0, 0))[0]
  45. mean_vec = [100, 100, 100]
  46. std_vec = [2, 2, 2]
  47. img = C.Normalize(mean=mean_vec, std=std_vec)(img)
  48. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  49. pixel_normalized = img[0][0][0]
  50. assert (pixel - mean_vec[0]) / std_vec[0] == pixel_normalized
  51. def test_eager_HWC2CHW():
  52. img = cv2.imread("../data/dataset/apple.jpg")
  53. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  54. channel = img.shape
  55. img = C.HWC2CHW()(img)
  56. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  57. channel_swaped = img.shape
  58. assert channel == (channel_swaped[1], channel_swaped[2], channel_swaped[0])
  59. def test_eager_pad():
  60. img = Image.open("../data/dataset/apple.jpg").convert("RGB")
  61. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
  62. img = C.Resize(size=(32, 32))(img)
  63. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
  64. size = img.shape
  65. pad = 4
  66. img = C.Pad(padding=pad)(img)
  67. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
  68. size_padded = img.shape
  69. assert size_padded == (size[0] + 2 * pad, size[1] + 2 * pad, size[2])
  70. def test_eager_exceptions():
  71. try:
  72. img = "../data/dataset/apple.jpg"
  73. img = C.Decode()(img)
  74. assert False
  75. except TypeError as e:
  76. assert "Input should be an encoded image in 1-D NumPy format" in str(e)
  77. try:
  78. img = np.array(["a", "b", "c"])
  79. img = C.Decode()(img)
  80. assert False
  81. except TypeError as e:
  82. assert "Input should be an encoded image in 1-D NumPy format" in str(e)
  83. try:
  84. img = cv2.imread("../data/dataset/apple.jpg")
  85. img = C.Resize(size=(-32, 32))(img)
  86. assert False
  87. except ValueError as e:
  88. assert "not within the required interval" in str(e)
  89. try:
  90. img = "../data/dataset/apple.jpg"
  91. img = C.Pad(padding=4)(img)
  92. assert False
  93. except TypeError as e:
  94. assert "Input should be NumPy or PIL image" in str(e)
  95. if __name__ == '__main__':
  96. test_eager_decode()
  97. test_eager_resize()
  98. test_eager_rescale()
  99. test_eager_normalize()
  100. test_eager_HWC2CHW()
  101. test_eager_pad()
  102. test_eager_exceptions()