You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_config.py 15 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing configuration manager
  17. """
  18. import os
  19. import filecmp
  20. import glob
  21. import numpy as np
  22. import mindspore.dataset as ds
  23. import mindspore.dataset.transforms.py_transforms
  24. import mindspore.dataset.vision.c_transforms as c_vision
  25. import mindspore.dataset.vision.py_transforms as py_vision
  26. from mindspore import log as logger
  27. from util import dataset_equal
  28. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  29. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  30. def test_basic():
  31. """
  32. Test basic configuration functions
  33. """
  34. # Save original configuration values
  35. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  36. prefetch_size_original = ds.config.get_prefetch_size()
  37. seed_original = ds.config.get_seed()
  38. monitor_sampling_interval_original = ds.config.get_monitor_sampling_interval()
  39. ds.config.load('../data/dataset/declient.cfg')
  40. assert ds.config.get_num_parallel_workers() == 8
  41. # assert ds.config.get_worker_connector_size() == 16
  42. assert ds.config.get_prefetch_size() == 16
  43. assert ds.config.get_seed() == 5489
  44. assert ds.config.get_monitor_sampling_interval() == 15
  45. ds.config.set_num_parallel_workers(2)
  46. # ds.config.set_worker_connector_size(3)
  47. ds.config.set_prefetch_size(4)
  48. ds.config.set_seed(5)
  49. ds.config.set_monitor_sampling_interval(45)
  50. assert ds.config.get_num_parallel_workers() == 2
  51. # assert ds.config.get_worker_connector_size() == 3
  52. assert ds.config.get_prefetch_size() == 4
  53. assert ds.config.get_seed() == 5
  54. assert ds.config.get_monitor_sampling_interval() == 45
  55. # Restore original configuration values
  56. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  57. ds.config.set_prefetch_size(prefetch_size_original)
  58. ds.config.set_seed(seed_original)
  59. ds.config.set_monitor_sampling_interval(monitor_sampling_interval_original)
  60. def test_get_seed():
  61. """
  62. This gets the seed value without explicitly setting a default, expect int.
  63. """
  64. assert isinstance(ds.config.get_seed(), int)
  65. def test_pipeline():
  66. """
  67. Test that our configuration pipeline works when we set parameters at different locations in dataset code
  68. """
  69. # Save original configuration values
  70. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  71. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  72. data1 = data1.map(operations=[c_vision.Decode(True)], input_columns=["image"])
  73. ds.serialize(data1, "testpipeline.json")
  74. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, num_parallel_workers=num_parallel_workers_original,
  75. shuffle=False)
  76. data2 = data2.map(operations=[c_vision.Decode(True)], input_columns=["image"])
  77. ds.serialize(data2, "testpipeline2.json")
  78. # check that the generated output is different
  79. assert filecmp.cmp('testpipeline.json', 'testpipeline2.json')
  80. # this test passes currently because our num_parallel_workers don't get updated.
  81. # remove generated jason files
  82. file_list = glob.glob('*.json')
  83. for f in file_list:
  84. try:
  85. os.remove(f)
  86. except IOError:
  87. logger.info("Error while deleting: {}".format(f))
  88. # Restore original configuration values
  89. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  90. def test_deterministic_run_fail():
  91. """
  92. Test RandomCrop with seed, expected to fail
  93. """
  94. logger.info("test_deterministic_run_fail")
  95. # Save original configuration values
  96. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  97. seed_original = ds.config.get_seed()
  98. # when we set the seed all operations within our dataset should be deterministic
  99. ds.config.set_seed(0)
  100. ds.config.set_num_parallel_workers(1)
  101. # First dataset
  102. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  103. # Assuming we get the same seed on calling constructor, if this op is re-used then result won't be
  104. # the same in between the two datasets. For example, RandomCrop constructor takes seed (0)
  105. # outputs a deterministic series of numbers, e,g "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  106. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  107. decode_op = c_vision.Decode()
  108. data1 = data1.map(operations=decode_op, input_columns=["image"])
  109. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  110. # Second dataset
  111. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  112. data2 = data2.map(operations=decode_op, input_columns=["image"])
  113. # If seed is set up on constructor
  114. data2 = data2.map(operations=random_crop_op, input_columns=["image"])
  115. try:
  116. dataset_equal(data1, data2, 0)
  117. except Exception as e:
  118. # two datasets split the number out of the sequence a
  119. logger.info("Got an exception in DE: {}".format(str(e)))
  120. assert "Array" in str(e)
  121. # Restore original configuration values
  122. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  123. ds.config.set_seed(seed_original)
  124. def test_seed_undeterministic():
  125. """
  126. Test seed with num parallel workers in c, this test is expected to fail some of the time
  127. """
  128. logger.info("test_seed_undeterministic")
  129. # Save original configuration values
  130. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  131. seed_original = ds.config.get_seed()
  132. ds.config.set_seed(0)
  133. ds.config.set_num_parallel_workers(3)
  134. # First dataset
  135. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  136. # We get the seed when constructor is called
  137. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  138. decode_op = c_vision.Decode()
  139. data1 = data1.map(operations=decode_op, input_columns=["image"])
  140. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  141. # Second dataset
  142. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  143. data2 = data2.map(operations=decode_op, input_columns=["image"])
  144. # Since seed is set up on constructor, so the two ops output deterministic sequence.
  145. # Assume the generated random sequence "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  146. random_crop_op2 = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  147. data2 = data2.map(operations=random_crop_op2, input_columns=["image"])
  148. try:
  149. dataset_equal(data1, data2, 0)
  150. except Exception as e:
  151. # two datasets both use numbers from the generated sequence "a"
  152. logger.info("Got an exception in DE: {}".format(str(e)))
  153. assert "Array" in str(e)
  154. # Restore original configuration values
  155. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  156. ds.config.set_seed(seed_original)
  157. def test_seed_deterministic():
  158. """
  159. Test deterministic run with setting the seed, only works with num_parallel worker = 1
  160. """
  161. logger.info("test_seed_deterministic")
  162. # Save original configuration values
  163. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  164. seed_original = ds.config.get_seed()
  165. ds.config.set_seed(0)
  166. ds.config.set_num_parallel_workers(1)
  167. # First dataset
  168. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  169. # seed will be read in during constructor call
  170. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  171. decode_op = c_vision.Decode()
  172. data1 = data1.map(operations=decode_op, input_columns=["image"])
  173. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  174. # Second dataset
  175. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  176. data2 = data2.map(operations=decode_op, input_columns=["image"])
  177. # If seed is set up on constructor, so the two ops output deterministic sequence
  178. random_crop_op2 = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  179. data2 = data2.map(operations=random_crop_op2, input_columns=["image"])
  180. dataset_equal(data1, data2, 0)
  181. # Restore original configuration values
  182. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  183. ds.config.set_seed(seed_original)
  184. def test_deterministic_run_distribution():
  185. """
  186. Test deterministic run with with setting the seed being used in a distribution
  187. """
  188. logger.info("test_deterministic_run_distribution")
  189. # Save original configuration values
  190. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  191. seed_original = ds.config.get_seed()
  192. # when we set the seed all operations within our dataset should be deterministic
  193. ds.config.set_seed(0)
  194. ds.config.set_num_parallel_workers(1)
  195. # First dataset
  196. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  197. random_horizontal_flip_op = c_vision.RandomHorizontalFlip(0.1)
  198. decode_op = c_vision.Decode()
  199. data1 = data1.map(operations=decode_op, input_columns=["image"])
  200. data1 = data1.map(operations=random_horizontal_flip_op, input_columns=["image"])
  201. # Second dataset
  202. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  203. data2 = data2.map(operations=decode_op, input_columns=["image"])
  204. # If seed is set up on constructor, so the two ops output deterministic sequence
  205. random_horizontal_flip_op2 = c_vision.RandomHorizontalFlip(0.1)
  206. data2 = data2.map(operations=random_horizontal_flip_op2, input_columns=["image"])
  207. dataset_equal(data1, data2, 0)
  208. # Restore original configuration values
  209. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  210. ds.config.set_seed(seed_original)
  211. def test_deterministic_python_seed():
  212. """
  213. Test deterministic execution with seed in python
  214. """
  215. logger.info("test_deterministic_python_seed")
  216. # Save original configuration values
  217. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  218. seed_original = ds.config.get_seed()
  219. ds.config.set_seed(0)
  220. ds.config.set_num_parallel_workers(1)
  221. # First dataset
  222. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  223. transforms = [
  224. py_vision.Decode(),
  225. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  226. py_vision.ToTensor(),
  227. ]
  228. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  229. data1 = data1.map(operations=transform, input_columns=["image"])
  230. data1_output = []
  231. # config.set_seed() calls random.seed()
  232. for data_one in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
  233. data1_output.append(data_one["image"])
  234. # Second dataset
  235. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  236. data2 = data2.map(operations=transform, input_columns=["image"])
  237. # config.set_seed() calls random.seed(), resets seed for next dataset iterator
  238. ds.config.set_seed(0)
  239. data2_output = []
  240. for data_two in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
  241. data2_output.append(data_two["image"])
  242. np.testing.assert_equal(data1_output, data2_output)
  243. # Restore original configuration values
  244. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  245. ds.config.set_seed(seed_original)
  246. def test_deterministic_python_seed_multi_thread():
  247. """
  248. Test deterministic execution with seed in python, this fails with multi-thread pyfunc run
  249. """
  250. logger.info("test_deterministic_python_seed_multi_thread")
  251. # Save original configuration values
  252. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  253. seed_original = ds.config.get_seed()
  254. ds.config.set_num_parallel_workers(3)
  255. ds.config.set_seed(0)
  256. # when we set the seed all operations within our dataset should be deterministic
  257. # First dataset
  258. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  259. transforms = [
  260. py_vision.Decode(),
  261. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  262. py_vision.ToTensor(),
  263. ]
  264. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  265. data1 = data1.map(operations=transform, input_columns=["image"], python_multiprocessing=True)
  266. data1_output = []
  267. # config.set_seed() calls random.seed()
  268. for data_one in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
  269. data1_output.append(data_one["image"])
  270. # Second dataset
  271. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  272. # If seed is set up on constructor
  273. data2 = data2.map(operations=transform, input_columns=["image"], python_multiprocessing=True)
  274. # config.set_seed() calls random.seed()
  275. ds.config.set_seed(0)
  276. data2_output = []
  277. for data_two in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
  278. data2_output.append(data_two["image"])
  279. try:
  280. np.testing.assert_equal(data1_output, data2_output)
  281. except Exception as e:
  282. # expect output to not match during multi-threaded execution
  283. logger.info("Got an exception in DE: {}".format(str(e)))
  284. assert "Array" in str(e)
  285. # Restore original configuration values
  286. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  287. ds.config.set_seed(seed_original)
  288. def test_auto_num_workers_error():
  289. """
  290. Test auto_num_workers error
  291. """
  292. err_msg = ""
  293. try:
  294. ds.config.set_auto_num_workers([1, 2])
  295. except TypeError as e:
  296. err_msg = str(e)
  297. assert "isn't of type bool" in err_msg
  298. def test_auto_num_workers():
  299. """
  300. Test auto_num_workers can be set.
  301. """
  302. saved_config = ds.config.get_auto_num_workers()
  303. assert isinstance(saved_config, bool)
  304. # change to a different config
  305. flipped_config = not saved_config
  306. ds.config.set_auto_num_workers(flipped_config)
  307. assert flipped_config == ds.config.get_auto_num_workers()
  308. # now flip this back
  309. ds.config.set_auto_num_workers(saved_config)
  310. assert saved_config == ds.config.get_auto_num_workers()
  311. if __name__ == '__main__':
  312. test_basic()
  313. test_get_seed()
  314. test_pipeline()
  315. test_deterministic_run_fail()
  316. test_seed_undeterministic()
  317. test_seed_deterministic()
  318. test_deterministic_run_distribution()
  319. test_deterministic_python_seed()
  320. test_deterministic_python_seed_multi_thread()
  321. test_auto_num_workers_error()
  322. test_auto_num_workers()