You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops_crop.cc 2.7 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <vector>
  17. #include <memory>
  18. #include "common/common_test.h"
  19. #include "ops/crop.h"
  20. #include "ir/dtype/type.h"
  21. #include "ir/value.h"
  22. #include "abstract/dshape.h"
  23. #include "utils/tensor_construct_utils.h"
  24. namespace mindspore {
  25. namespace ops {
  26. class TestCrop : public UT::Common {
  27. public:
  28. TestCrop() {}
  29. void SetUp() {}
  30. void TearDown() {}
  31. };
  32. TEST_F(TestCrop, test_ops_crop1) {
  33. auto crop = std::make_shared<Crop>();
  34. crop->Init(1, std::vector<int64_t>{1, 1, 1, 1});
  35. std::vector<int64_t> ret = crop->get_offsets();
  36. EXPECT_EQ(crop->get_axis(), 1);
  37. for (auto item : ret) {
  38. EXPECT_EQ(item, 1);
  39. }
  40. auto tensor_x1 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{2, 2});
  41. auto tensor_x2 = std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int64_t>{1});
  42. MS_EXCEPTION_IF_NULL(tensor_x1);
  43. MS_EXCEPTION_IF_NULL(tensor_x2);
  44. auto tensor_x1_data = reinterpret_cast<float *>(tensor_x1->data_c());
  45. *tensor_x1_data = 1.0;
  46. tensor_x1_data++;
  47. *tensor_x1_data = 2.0;
  48. tensor_x1_data++;
  49. *tensor_x1_data = 3.0;
  50. tensor_x1_data++;
  51. *tensor_x1_data = 4.0;
  52. tensor_x1_data++;
  53. auto tensor_x2_data = reinterpret_cast<int *>(tensor_x2->data_c());
  54. *tensor_x2_data = 1;
  55. auto abstract = crop->Infer({tensor_x1->ToAbstract(), tensor_x2->ToAbstract()});
  56. MS_EXCEPTION_IF_NULL(abstract);
  57. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  58. auto shape_ptr = abstract->BuildShape();
  59. MS_EXCEPTION_IF_NULL(shape_ptr);
  60. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  61. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  62. MS_EXCEPTION_IF_NULL(shape);
  63. auto shape_vec = shape->shape();
  64. auto type = abstract->BuildType();
  65. MS_EXCEPTION_IF_NULL(type);
  66. EXPECT_EQ(type->isa<TensorType>(), true);
  67. auto tensor_type = type->cast<TensorTypePtr>();
  68. MS_EXCEPTION_IF_NULL(tensor_type);
  69. auto data_type = tensor_type->element();
  70. MS_EXCEPTION_IF_NULL(data_type);
  71. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
  72. EXPECT_EQ(shape_vec.size(), 1);
  73. EXPECT_EQ(shape_vec[0], 1);
  74. }
  75. } // namespace ops
  76. } // namespace mindspore