|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <vector>
- #include <memory>
- #include "common/common_test.h"
- #include "ops/crop.h"
- #include "ir/dtype/type.h"
- #include "ir/value.h"
- #include "abstract/dshape.h"
- #include "utils/tensor_construct_utils.h"
-
- namespace mindspore {
- namespace ops {
- class TestCrop : public UT::Common {
- public:
- TestCrop() {}
- void SetUp() {}
- void TearDown() {}
- };
-
- TEST_F(TestCrop, test_ops_crop1) {
- auto crop = std::make_shared<Crop>();
- crop->Init(1, std::vector<int64_t>{1, 1, 1, 1});
- std::vector<int64_t> ret = crop->get_offsets();
- EXPECT_EQ(crop->get_axis(), 1);
- for (auto item : ret) {
- EXPECT_EQ(item, 1);
- }
- auto tensor_x1 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{2, 2});
- auto tensor_x2 = std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int64_t>{1});
- MS_EXCEPTION_IF_NULL(tensor_x1);
- MS_EXCEPTION_IF_NULL(tensor_x2);
- auto tensor_x1_data = reinterpret_cast<float *>(tensor_x1->data_c());
- *tensor_x1_data = 1.0;
- tensor_x1_data++;
- *tensor_x1_data = 2.0;
- tensor_x1_data++;
- *tensor_x1_data = 3.0;
- tensor_x1_data++;
- *tensor_x1_data = 4.0;
- tensor_x1_data++;
- auto tensor_x2_data = reinterpret_cast<int *>(tensor_x2->data_c());
- *tensor_x2_data = 1;
- auto abstract = crop->Infer({tensor_x1->ToAbstract(), tensor_x2->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- auto type = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto data_type = tensor_type->element();
- MS_EXCEPTION_IF_NULL(data_type);
- EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
- EXPECT_EQ(shape_vec.size(), 1);
- EXPECT_EQ(shape_vec[0], 1);
- }
- } // namespace ops
- } // namespace mindspore
|