You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops_concat.cc 4.1 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <vector>
  17. #include <memory>
  18. #include "common/common_test.h"
  19. #include "ops/concat.h"
  20. #include "ir/dtype/type.h"
  21. #include "ir/value.h"
  22. #include "abstract/dshape.h"
  23. #include "utils/tensor_construct_utils.h"
  24. namespace mindspore {
  25. namespace ops {
  26. class TestConcat : public UT::Common {
  27. public:
  28. TestConcat() {}
  29. void SetUp() {}
  30. void TearDown() {}
  31. };
  32. TEST_F(TestConcat, test_ops_concat1) {
  33. auto concat = std::make_shared<Concat>();
  34. concat->Init(1);
  35. auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
  36. auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 3, 7, 7});
  37. auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 4, 7, 7});
  38. MS_EXCEPTION_IF_NULL(tensor_x1);
  39. MS_EXCEPTION_IF_NULL(tensor_x2);
  40. MS_EXCEPTION_IF_NULL(tensor_x3);
  41. auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
  42. auto abstract = concat->Infer({input_tuple->ToAbstract()});
  43. MS_EXCEPTION_IF_NULL(abstract);
  44. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  45. auto shape_ptr = abstract->BuildShape();
  46. MS_EXCEPTION_IF_NULL(shape_ptr);
  47. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  48. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  49. MS_EXCEPTION_IF_NULL(shape);
  50. auto shape_vec = shape->shape();
  51. auto type = abstract->BuildType();
  52. MS_EXCEPTION_IF_NULL(type);
  53. EXPECT_EQ(type->isa<TensorType>(), true);
  54. auto tensor_type = type->cast<TensorTypePtr>();
  55. MS_EXCEPTION_IF_NULL(tensor_type);
  56. auto data_type = tensor_type->element();
  57. MS_EXCEPTION_IF_NULL(data_type);
  58. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
  59. EXPECT_EQ(shape_vec.size(), 4);
  60. EXPECT_EQ(shape_vec[0], 3);
  61. EXPECT_EQ(shape_vec[1], 9);
  62. EXPECT_EQ(shape_vec[2], 7);
  63. EXPECT_EQ(shape_vec[3], 7);
  64. }
  65. TEST_F(TestConcat, test_ops_concat2) {
  66. auto concat = std::make_shared<Concat>();
  67. concat->Init(2);
  68. auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 5});
  69. auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 2});
  70. auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 3});
  71. MS_EXCEPTION_IF_NULL(tensor_x1);
  72. MS_EXCEPTION_IF_NULL(tensor_x2);
  73. MS_EXCEPTION_IF_NULL(tensor_x3);
  74. auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
  75. auto abstract = concat->Infer({input_tuple->ToAbstract()});
  76. MS_EXCEPTION_IF_NULL(abstract);
  77. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  78. auto shape_ptr = abstract->BuildShape();
  79. MS_EXCEPTION_IF_NULL(shape_ptr);
  80. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  81. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  82. MS_EXCEPTION_IF_NULL(shape);
  83. auto shape_vec = shape->shape();
  84. auto type = abstract->BuildType();
  85. MS_EXCEPTION_IF_NULL(type);
  86. EXPECT_EQ(type->isa<TensorType>(), true);
  87. auto tensor_type = type->cast<TensorTypePtr>();
  88. MS_EXCEPTION_IF_NULL(tensor_type);
  89. auto data_type = tensor_type->element();
  90. MS_EXCEPTION_IF_NULL(data_type);
  91. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
  92. EXPECT_EQ(shape_vec.size(), 3);
  93. EXPECT_EQ(shape_vec[0], 3);
  94. EXPECT_EQ(shape_vec[1], 4);
  95. EXPECT_EQ(shape_vec[2], 10);
  96. }
  97. } // namespace ops
  98. } // namespace mindspore