You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops_addn.cc 3.8 kB

4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <vector>
  17. #include <memory>
  18. #include "common/common_test.h"
  19. #include "ops/addn.h"
  20. #include "ir/dtype/type.h"
  21. #include "ir/value.h"
  22. #include "abstract/dshape.h"
  23. #include "utils/tensor_construct_utils.h"
  24. namespace mindspore {
  25. namespace ops {
  26. class TestAddN : public UT::Common {
  27. public:
  28. TestAddN() {}
  29. void SetUp() {}
  30. void TearDown() {}
  31. };
  32. TEST_F(TestAddN, test_ops_addn1) {
  33. auto addn = std::make_shared<AddN>();
  34. auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
  35. auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
  36. MS_EXCEPTION_IF_NULL(tensor_x1);
  37. MS_EXCEPTION_IF_NULL(tensor_x2);
  38. auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2});
  39. auto abstract = addn->Infer({input_tuple->ToAbstract()});
  40. MS_EXCEPTION_IF_NULL(abstract);
  41. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  42. auto shape_ptr = abstract->BuildShape();
  43. MS_EXCEPTION_IF_NULL(shape_ptr);
  44. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  45. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  46. MS_EXCEPTION_IF_NULL(shape);
  47. auto shape_vec = shape->shape();
  48. auto type = abstract->BuildType();
  49. MS_EXCEPTION_IF_NULL(type);
  50. EXPECT_EQ(type->isa<TensorType>(), true);
  51. auto tensor_type = type->cast<TensorTypePtr>();
  52. MS_EXCEPTION_IF_NULL(tensor_type);
  53. auto data_type = tensor_type->element();
  54. MS_EXCEPTION_IF_NULL(data_type);
  55. EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
  56. EXPECT_EQ(shape_vec.size(), 4);
  57. EXPECT_EQ(shape_vec[0], 3);
  58. EXPECT_EQ(shape_vec[1], 2);
  59. EXPECT_EQ(shape_vec[2], 7);
  60. EXPECT_EQ(shape_vec[3], 7);
  61. }
  62. TEST_F(TestAddN, test_ops_addn2) {
  63. auto addn = std::make_shared<AddN>();
  64. auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
  65. auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
  66. auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
  67. MS_EXCEPTION_IF_NULL(tensor_x1);
  68. MS_EXCEPTION_IF_NULL(tensor_x2);
  69. MS_EXCEPTION_IF_NULL(tensor_x3);
  70. auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
  71. auto abstract = addn->Infer({input_tuple->ToAbstract()});
  72. MS_EXCEPTION_IF_NULL(abstract);
  73. EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
  74. auto shape_ptr = abstract->BuildShape();
  75. MS_EXCEPTION_IF_NULL(shape_ptr);
  76. EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
  77. auto shape = shape_ptr->cast<abstract::ShapePtr>();
  78. MS_EXCEPTION_IF_NULL(shape);
  79. auto shape_vec = shape->shape();
  80. auto type = abstract->BuildType();
  81. MS_EXCEPTION_IF_NULL(type);
  82. EXPECT_EQ(type->isa<TensorType>(), true);
  83. auto tensor_type = type->cast<TensorTypePtr>();
  84. MS_EXCEPTION_IF_NULL(tensor_type);
  85. auto data_type = tensor_type->element();
  86. MS_EXCEPTION_IF_NULL(data_type);
  87. EXPECT_EQ(data_type->type_id(), kNumberTypeBool);
  88. EXPECT_EQ(shape_vec.size(), 3);
  89. EXPECT_EQ(shape_vec[0], 3);
  90. EXPECT_EQ(shape_vec[1], 4);
  91. EXPECT_EQ(shape_vec[2], 5);
  92. }
  93. } // namespace ops
  94. } // namespace mindspore