You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

execute_test.cc 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. /**
  2. * Copyright 2020-2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "common/common.h"
  17. #include "include/api/types.h"
  18. #include "minddata/dataset/core/de_tensor.h"
  19. #include "minddata/dataset/include/execute.h"
  20. #include "minddata/dataset/include/transforms.h"
  21. #include "minddata/dataset/include/vision.h"
  22. #include "utils/log_adapter.h"
  23. using namespace mindspore::dataset;
  24. using mindspore::LogStream;
  25. using mindspore::ExceptionType::NoExceptionType;
  26. using mindspore::MsLogLevel::INFO;
  27. class MindDataTestExecute : public UT::DatasetOpTesting {
  28. protected:
  29. };
  30. TEST_F(MindDataTestExecute, TestComposeTransforms) {
  31. MS_LOG(INFO) << "Doing TestComposeTransforms.";
  32. // Read images
  33. auto image = ReadFileToTensor("data/dataset/apple.jpg");
  34. // Transform params
  35. std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
  36. std::shared_ptr<TensorTransform> center_crop(new vision::CenterCrop({30}));
  37. std::shared_ptr<TensorTransform> rescale = std::make_shared<vision::Rescale>(1. / 3, 0.5);
  38. auto transform = Execute({decode, center_crop, rescale});
  39. Status rc = transform(image, &image);
  40. EXPECT_EQ(rc, Status::OK());
  41. EXPECT_EQ(30, image.Shape()[0]);
  42. EXPECT_EQ(30, image.Shape()[1]);
  43. }
  44. TEST_F(MindDataTestExecute, TestTransformInput1) {
  45. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput1.";
  46. // Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
  47. // instantiated via mix of make_shared and new
  48. // Read images
  49. auto image = ReadFileToTensor("data/dataset/apple.jpg");
  50. // Define transform operations
  51. std::shared_ptr<TensorTransform> decode = std::make_shared<vision::Decode>();
  52. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  53. std::shared_ptr<TensorTransform> normalize(
  54. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  55. std::shared_ptr<TensorTransform> hwc2chw = std::make_shared<vision::HWC2CHW>();
  56. mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
  57. // Apply transform on image
  58. Status rc = Transform(image, &image);
  59. // Check image info
  60. ASSERT_TRUE(rc.IsOk());
  61. ASSERT_EQ(image.Shape().size(), 3);
  62. ASSERT_EQ(image.Shape()[0], 3);
  63. ASSERT_EQ(image.Shape()[1], 224);
  64. ASSERT_EQ(image.Shape()[2], 224);
  65. }
  66. TEST_F(MindDataTestExecute, TestTransformInput2) {
  67. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput2.";
  68. // Test Execute with transform op input using API constructors, with std::shared_ptr<TensorTransform pointers,
  69. // instantiated via new
  70. // With this way of creating TensorTransforms, we don't need to explicitly delete the object created with the
  71. // "new" keyword. When the shared pointer goes out of scope the object destructor will be called.
  72. // Read image, construct MSTensor from dataset tensor
  73. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  74. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  75. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  76. // Define transform operations
  77. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  78. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  79. std::shared_ptr<TensorTransform> normalize(
  80. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  81. std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
  82. mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
  83. // Apply transform on image
  84. Status rc = Transform(image, &image);
  85. // Check image info
  86. ASSERT_TRUE(rc.IsOk());
  87. ASSERT_EQ(image.Shape().size(), 3);
  88. ASSERT_EQ(image.Shape()[0], 3);
  89. ASSERT_EQ(image.Shape()[1], 224);
  90. ASSERT_EQ(image.Shape()[2], 224);
  91. }
  92. TEST_F(MindDataTestExecute, TestTransformInput3) {
  93. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInput3.";
  94. // Test Execute with transform op input using API constructors, with auto pointers
  95. // Read image, construct MSTensor from dataset tensor
  96. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  97. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  98. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  99. // Define transform operations
  100. auto decode = vision::Decode();
  101. mindspore::dataset::Execute Transform1(decode);
  102. auto resize = vision::Resize({224, 224});
  103. mindspore::dataset::Execute Transform2(resize);
  104. // Apply transform on image
  105. Status rc;
  106. rc = Transform1(image, &image);
  107. ASSERT_TRUE(rc.IsOk());
  108. rc = Transform2(image, &image);
  109. ASSERT_TRUE(rc.IsOk());
  110. // Check image info
  111. ASSERT_EQ(image.Shape().size(), 3);
  112. ASSERT_EQ(image.Shape()[0], 224);
  113. ASSERT_EQ(image.Shape()[1], 224);
  114. ASSERT_EQ(image.Shape()[2], 3);
  115. }
  116. TEST_F(MindDataTestExecute, TestTransformInputSequential) {
  117. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformInputSequential.";
  118. // Test Execute with transform op input using API constructors, with auto pointers;
  119. // Apply 2 transformations sequentially, including single non-vector Transform op input
  120. // Read image, construct MSTensor from dataset tensor
  121. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  122. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  123. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  124. // Define transform#1 operations
  125. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  126. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  127. std::shared_ptr<TensorTransform> normalize(
  128. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  129. std::vector<std::shared_ptr<TensorTransform>> op_list = {decode, resize, normalize};
  130. mindspore::dataset::Execute Transform(op_list);
  131. // Apply transform#1 on image
  132. Status rc = Transform(image, &image);
  133. // Define transform#2 operations
  134. std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
  135. mindspore::dataset::Execute Transform2(hwc2chw);
  136. // Apply transform#2 on image
  137. rc = Transform2(image, &image);
  138. // Check image info
  139. ASSERT_TRUE(rc.IsOk());
  140. ASSERT_EQ(image.Shape().size(), 3);
  141. ASSERT_EQ(image.Shape()[0], 3);
  142. ASSERT_EQ(image.Shape()[1], 224);
  143. ASSERT_EQ(image.Shape()[2], 224);
  144. }
  145. TEST_F(MindDataTestExecute, TestTransformDecodeResizeCenterCrop1) {
  146. MS_LOG(INFO) << "Doing MindDataTestExecute-TestTransformDecodeResizeCenterCrop1.";
  147. // Test Execute with Decode, Resize and CenterCrop transform ops input using API constructors, with shared pointers
  148. // Read image, construct MSTensor from dataset tensor
  149. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  150. mindspore::dataset::Tensor::CreateFromFile("data/dataset/apple.jpg", &de_tensor);
  151. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  152. // Define transform operations
  153. std::vector<int32_t> resize_paras = {256, 256};
  154. std::vector<int32_t> crop_paras = {224, 224};
  155. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  156. std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
  157. std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
  158. std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
  159. std::vector<std::shared_ptr<TensorTransform>> op_list = {decode, resize, centercrop, hwc2chw};
  160. mindspore::dataset::Execute Transform(op_list, MapTargetDevice::kCpu);
  161. // Apply transform on image
  162. Status rc = Transform(image, &image);
  163. // Check image info
  164. ASSERT_TRUE(rc.IsOk());
  165. ASSERT_EQ(image.Shape().size(), 3);
  166. ASSERT_EQ(image.Shape()[0], 3);
  167. ASSERT_EQ(image.Shape()[1], 224);
  168. ASSERT_EQ(image.Shape()[2], 224);
  169. }