|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- /**
- * Copyright 2020-2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <memory>
- #include <string>
-
- #include "common/common.h"
- #include "minddata/dataset/core/client.h"
- #include "minddata/dataset/engine/datasetops/source/celeba_op.h"
- #include "minddata/dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
- #include "minddata/dataset/util/status.h"
- #include "gtest/gtest.h"
- #include "utils/log_adapter.h"
- #include "securec.h"
-
- using namespace mindspore::dataset;
- using mindspore::LogStream;
- using mindspore::ExceptionType::NoExceptionType;
- using mindspore::MsLogLevel::ERROR;
-
- std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);
-
- std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
-
- std::shared_ptr<CelebAOp> Celeba(int32_t num_workers, int32_t queue_size, const std::string &dir,
- std::shared_ptr<SamplerRT> sampler = nullptr, bool decode = false,
- const std::string &dataset_type = "all") {
- std::shared_ptr<CelebAOp> so;
- CelebAOp::Builder builder;
- Status rc = builder.SetNumWorkers(num_workers)
- .SetCelebADir(dir)
- .SetOpConnectorSize(queue_size)
- .SetSampler(std::move(sampler))
- .SetDecode(decode)
- .SetUsage(dataset_type)
- .Build(&so);
- return so;
- }
-
- class MindDataTestCelebaDataset : public UT::DatasetOpTesting {
- protected:
- };
-
- TEST_F(MindDataTestCelebaDataset, TestSequentialCeleba) {
- std::string dir = datasets_root_path_ + "/testCelebAData/";
- uint32_t expect_labels[4][40] = {{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1}};
- uint32_t count = 0;
- auto tree = Build({Celeba(16, 2, dir)});
- tree->Prepare();
- Status rc = tree->Launch();
- if (rc.IsError()) {
- MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
- EXPECT_TRUE(false);
- } else {
- DatasetIterator di(tree);
- TensorMap tensor_map;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- EXPECT_TRUE(rc.IsOk());
- while (tensor_map.size() != 0) {
- uint32_t label;
- for (int index = 0; index < 40; index++) {
- tensor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
- EXPECT_TRUE(expect_labels[count][index] == label);
- }
- count++;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- }
- EXPECT_TRUE(count == 4);
- }
- }
-
- TEST_F(MindDataTestCelebaDataset, TestCelebaRepeat) {
- std::string dir = datasets_root_path_ + "/testCelebAData/";
- uint32_t expect_labels[8][40] = {{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1},
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
- 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1}};
- uint32_t count = 0;
- auto op1 = Celeba(16, 2, dir);
- auto op2 = Repeat(2);
- auto tree = Build({op1, op2});
- op1->set_total_repeats(2);
- op1->set_num_repeats_per_epoch(2);
- tree->Prepare();
- Status rc = tree->Launch();
- if (rc.IsError()) {
- MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
- EXPECT_TRUE(false);
- } else {
- DatasetIterator di(tree);
- TensorMap tensor_map;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- EXPECT_TRUE(rc.IsOk());
- while (tensor_map.size() != 0) {
- uint32_t label;
- for (int index = 0; index < 40; index++) {
- tensor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
- EXPECT_TRUE(expect_labels[count][index] == label);
- }
- count++;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- }
- EXPECT_TRUE(count == 8);
- }
- }
-
- TEST_F(MindDataTestCelebaDataset, TestSubsetRandomSamplerCeleba) {
- std::vector<int64_t> indices({1});
- int64_t num_samples = 0;
- std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
- uint32_t expect_labels[1][40] = {{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}};
- std::string dir = datasets_root_path_ + "/testCelebAData/";
- uint32_t count = 0;
- auto tree = Build({Celeba(16, 2, dir, std::move(sampler))});
- tree->Prepare();
- Status rc = tree->Launch();
- if (rc.IsError()) {
- MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
- EXPECT_TRUE(false);
- } else {
- DatasetIterator di(tree);
- TensorMap tensor_map;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- EXPECT_TRUE(rc.IsOk());
- while (tensor_map.size() != 0) {
- uint32_t label;
- for (int index = 0; index < 40; index++) {
- tensor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
- EXPECT_TRUE(expect_labels[count][index] == label);
- }
- count++;
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- }
- EXPECT_TRUE(count == 1);
- }
- }
|