|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- # SSD Example
-
- ## Description
-
- SSD network based on MobileNetV2, with support for training and evaluation.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Dataset
-
- We use coco2017 as training dataset in this example by default, and you can also use your own datasets.
-
- 1. If coco dataset is used. **Select dataset to coco when run script.**
- Install Cython and pycocotool.
-
- ```
- pip install Cython
-
- pip install pycocotools
- ```
- And change the coco_root and other settings you need in `config.py`. The directory structure is as follows:
-
-
- ```
- .
- └─cocodataset
- ├─annotations
- ├─instance_train2017.json
- └─instance_val2017.json
- ├─val2017
- └─train2017
- ```
-
- 2. If your own dataset is used. **Select dataset to other when run script.**
- Organize the dataset infomation into a TXT file, each row in the file is as follows:
-
- ```
- train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
- ```
-
- Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are setting in `config.py`.
-
-
- ## Running the example
-
- ### Training
-
- To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
-
-
- - Stand alone mode
-
- ```
- python train.py --dataset coco
-
- ```
-
- You can run ```python train.py -h``` to get more information.
-
-
- - Distribute mode
-
- ```
- sh run_distribute_train.sh 8 500 0.2 coco /data/hccl.json
- ```
-
- The input parameters are device numbers, epoch size, learning rate, dataset mode and [hccl json configuration file](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). **It is better to use absolute path.**
-
- You will get the loss value of each step as following:
-
- ```
- epoch: 1 step: 458, loss is 3.1681802
- epoch time: 228752.4654865265, per step time: 499.4595316299705
- epoch: 2 step: 458, loss is 2.8847265
- epoch time: 38912.93382644653, per step time: 84.96273761232868
- epoch: 3 step: 458, loss is 2.8398118
- epoch time: 38769.184827804565, per step time: 84.64887516987896
- ...
-
- epoch: 498 step: 458, loss is 0.70908034
- epoch time: 38771.079778671265, per step time: 84.65301261718616
- epoch: 499 step: 458, loss is 0.7974688
- epoch time: 38787.413120269775, per step time: 84.68867493508685
- epoch: 500 step: 458, loss is 0.5548882
- epoch time: 39064.8467540741, per step time: 85.29442522723602
- ```
-
- ### Evaluation
-
- for evaluation , run `eval.py` with `checkpoint_path`. `checkpoint_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html) file.
-
- ```
- python eval.py --checkpoint_path ssd.ckpt --dataset coco
- ```
-
- You can run ```python eval.py -h``` to get more information.
-
- You will get the result as following:
-
- ```
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.189
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.341
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.183
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.040
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.181
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.326
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.213
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.348
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.380
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.124
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.412
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.588
-
- ========================================
-
- mAP: 0.18937438355383837
- ```
|