You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self,):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. test_case_math_ops = [
  122. ('Neg', {
  123. 'block': P.Neg(),
  124. 'desc_inputs': [[1, 3, 4, 4]],
  125. 'desc_bprop': [[1, 3, 4, 4]]}),
  126. ('Sub', {
  127. 'block': P.Sub(),
  128. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  129. 'desc_bprop': [[2, 3, 3, 5]]}),
  130. ('TensorAdd', {
  131. 'block': P.TensorAdd(),
  132. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  133. 'desc_bprop': [[2, 3, 3, 5]]}),
  134. ('Mul0', {
  135. 'block': P.Mul(),
  136. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  137. 'desc_bprop': [[2, 3, 3, 5]]}),
  138. ('Mul1', {
  139. 'block': P.Mul(),
  140. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  141. 'desc_bprop': [[2, 3, 3, 5]]}),
  142. ('Mul2', {
  143. 'block': P.Mul(),
  144. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  145. 'desc_bprop': [[2, 3, 3, 5]],
  146. 'skip': ['backward']}),
  147. ('Mul3', {
  148. 'block': P.Mul(),
  149. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  150. 'desc_bprop': [[2, 3, 3, 5]],
  151. 'skip': ['backward']}),
  152. ('Mul4', {
  153. 'block': P.Mul(),
  154. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  155. 'desc_bprop': [[2, 3, 3, 5]],
  156. 'skip': ['backward']}),
  157. ('Add0', {
  158. 'block': P.TensorAdd(),
  159. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]]}),
  161. ('Add1', {
  162. 'block': P.TensorAdd(),
  163. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  164. 'desc_bprop': [[2, 3, 3, 5]],
  165. 'skip': ['backward']}),
  166. ('Add2', {
  167. 'block': P.TensorAdd(),
  168. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  169. 'desc_bprop': [[2, 3, 3, 5]],
  170. 'skip': ['backward']}),
  171. ('Add3', {
  172. 'block': P.TensorAdd(),
  173. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add4', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  179. 'desc_bprop': [[2, 3, 3, 5]],
  180. 'skip': ['backward']}),
  181. ('Minimum', {
  182. 'block': P.Minimum(),
  183. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  184. 'desc_bprop': [[2, 3, 3, 5]]}),
  185. ('Pow', {
  186. 'block': P.Pow(),
  187. 'desc_const': [2.0],
  188. 'desc_inputs': [[2, 3, 3, 5]],
  189. 'desc_bprop': [[2, 3, 3, 5]]}),
  190. ('Exp', {
  191. 'block': P.Exp(),
  192. 'desc_inputs': [[2, 3]],
  193. 'desc_bprop': [[2, 3]]}),
  194. ('Floor', {
  195. 'block': P.Floor(),
  196. 'desc_inputs': [[2, 512, 56, 56]],
  197. 'desc_bprop': [[2, 512, 56, 56]],
  198. 'skip': ['backward']}),
  199. ('ACos', {
  200. 'block': P.ACos(),
  201. 'desc_inputs': [[2, 3]],
  202. 'desc_bprop': [[2, 3]]}),
  203. ('Acosh', {
  204. 'block': P.Acosh(),
  205. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  206. 'skip': ['backward']}),
  207. ('Sin', {
  208. 'block': P.Sin(),
  209. 'desc_inputs': [[2, 3]],
  210. 'desc_bprop': [[2, 3]]}),
  211. ('Reciprocal', {
  212. 'block': P.Reciprocal(),
  213. 'desc_inputs': [[2, 3, 3, 5]],
  214. 'desc_bprop': [[2, 3, 3, 5]]}),
  215. ('Minimum_0', {
  216. 'block': P.Minimum(),
  217. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  218. 'desc_bprop': [[2, 3, 3, 5]]}),
  219. ('Maximum', {
  220. 'block': P.Maximum(),
  221. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  222. 'desc_bprop': [[2, 3, 3, 5]]}),
  223. ('Maximum_0', {
  224. 'block': P.Maximum(),
  225. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  226. 'desc_bprop': [[2, 3, 3, 5]]}),
  227. ('MaximumGrad', {
  228. 'block': G.MaximumGrad(),
  229. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  230. 'skip': ['backward']}),
  231. ('MinimumGrad', {
  232. 'block': G.MinimumGrad(),
  233. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  234. 'skip': ['backward']}),
  235. ('StridedSlice', {
  236. 'block': P.StridedSlice(),
  237. 'desc_const': [(0, 1, 2, 1),
  238. (2, 3, 3, 4),
  239. (1, 1, 1, 1)],
  240. 'desc_inputs': [[2, 3, 3, 5]],
  241. 'desc_bprop': [[2, 2, 1, 3]]}),
  242. ('Slice_1', {
  243. 'block': P.Slice(),
  244. 'desc_const': [(0, 1, 2, 1),
  245. (1, 1, 1, 2)],
  246. 'desc_inputs': [[2, 3, 3, 5]],
  247. 'desc_bprop': [[1, 1, 1, 2]]}),
  248. ('StridedSliceGrad', {
  249. 'block': G.StridedSliceGrad(),
  250. 'desc_const': [(64, 1, 1024),
  251. (0, 1, 0),
  252. (64, 2, 1024),
  253. (1, 1, 1)],
  254. 'desc_inputs': [[64, 128, 1024]],
  255. 'skip': ['backward']}),
  256. ('RandomChoiceWithMask', {
  257. 'block': P.RandomChoiceWithMask(256),
  258. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  259. 'desc_bprop': [[256,4], [256,4]],
  260. 'skip': ['backward']}),
  261. ('LessEqual', {
  262. 'block': P.LessEqual(),
  263. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  264. Tensor(np.random.rand(4).astype(np.float16))],
  265. 'skip': ['backward']}),
  266. ('Less', {
  267. 'block': P.Less(),
  268. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  269. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  270. 'skip': ['backward']}),
  271. ('RealDiv_0', {
  272. 'block': P.RealDiv(),
  273. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  274. 'desc_inputs': [],
  275. 'skip': ['backward']}),
  276. ('RealDiv', {
  277. 'block': P.RealDiv(),
  278. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  279. 'desc_bprop': [[4]]}),
  280. ('RealDiv_1', {
  281. 'block': P.RealDiv(),
  282. 'desc_inputs': [[512, 1024], [512, 1024]],
  283. 'desc_bprop': [[512, 1024]]}),
  284. ('FloorDiv', {
  285. 'block': P.FloorDiv(),
  286. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  287. Tensor(np.random.rand(4).astype(np.float16))],
  288. 'skip': ['backward']}),
  289. ('FloorMod', {
  290. 'block': P.FloorMod(),
  291. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  292. Tensor(np.random.rand(4).astype(np.float16))],
  293. 'skip': ['backward']}),
  294. ('identity', {
  295. 'block': ops.functional.identity,
  296. 'desc_inputs': [[2, 2]],
  297. 'skip': ['backward']}),
  298. ('MatMul_1', {
  299. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  300. 'desc_inputs': [[1024, 160], [160, 1024]],
  301. 'desc_bprop': [[1024, 1024]]}),
  302. ('MatMul_2', {
  303. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  304. 'desc_inputs': [[160, 1024], [1024, 160]],
  305. 'desc_bprop': [[1024, 1024]]}),
  306. ('Sub', {
  307. 'block': P.Sub(),
  308. 'desc_inputs': [[3], [3]],
  309. 'desc_bprop': [[3]]}),
  310. ('TruncatedNormal', {
  311. 'block': P.TruncatedNormal(),
  312. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  313. 'desc_inputs': [],
  314. 'skip': ['backward'],
  315. 'add_fake_input': True}),
  316. ('Select', {
  317. 'block': P.Select(),
  318. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  319. [2, 3], [2, 3]],
  320. 'desc_bprop': [[2, 3]]}),
  321. ('Rank', {
  322. 'block': P.Rank(),
  323. 'desc_inputs': [[2, 3]],
  324. 'skip': ['backward']}),
  325. ('InvertPermutation', {
  326. 'block': P.InvertPermutation(),
  327. 'desc_const': [(0, 3, 1, 2)],
  328. 'desc_inputs': [],
  329. 'skip': ['backward']}),
  330. ('Square', {
  331. 'block': P.Square(),
  332. 'desc_inputs': [[4]],
  333. 'desc_bprop': [[4]]}),
  334. ('Rsqrt', {
  335. 'block': P.Rsqrt(),
  336. 'desc_inputs': [[4]],
  337. 'desc_bprop': [[4]]}),
  338. ('Sqrt', {
  339. 'block': P.Sqrt(),
  340. 'desc_inputs': [[4]],
  341. 'desc_bprop': [[4]]}),
  342. ('RealDiv', {
  343. 'block': P.RealDiv(),
  344. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  345. 'desc_bprop': [[2, 3, 4, 5]]}),
  346. ('Div', {
  347. 'block': P.Div(),
  348. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  349. 'desc_bprop': [[2, 3, 4, 5]]}),
  350. ('Equal', {
  351. 'block': P.Equal(),
  352. 'desc_inputs': [[3, 4, 5], [4, 5]],
  353. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  354. ('NotEqual', {
  355. 'block': P.NotEqual(),
  356. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  357. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  358. ('Greater', {
  359. 'block': P.Greater(),
  360. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  361. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  362. ('GreaterEqual', {
  363. 'block': P.GreaterEqual(),
  364. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  365. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  366. ('LogicalNot', {
  367. 'block': P.LogicalNot(),
  368. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  369. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  370. ('LogicalAnd', {
  371. 'block': P.LogicalAnd(),
  372. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  373. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  374. ('LogicalOr', {
  375. 'block': P.LogicalOr(),
  376. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  377. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  378. ('NpuAllocFloatStatus', {
  379. 'block': P.NPUAllocFloatStatus(),
  380. 'desc_inputs': [],
  381. 'add_fack_input': True,
  382. 'fack_input_type': np.float32,
  383. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  384. 'skip': ['backward']}),
  385. ('NpuGetFloatStatus', {
  386. 'block': P.NPUGetFloatStatus(),
  387. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  388. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  389. 'skip': ['backward']}),
  390. ('NpuClearFloatStatus', {
  391. 'block': P.NPUClearFloatStatus(),
  392. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  393. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  394. 'skip': ['backward']}),
  395. ('CheckValid', {
  396. 'block': P.CheckValid(),
  397. 'desc_inputs': [[20000, 4], [3]],
  398. 'desc_bprop': [[20000]],
  399. 'skip': ['backward']}),
  400. ('NMSWithMask', {
  401. 'block': P.NMSWithMask(0.5),
  402. 'desc_inputs': [[128, 5]],
  403. 'desc_bprop': [[128, 5], [128], [128]],
  404. 'skip': ['backward']}),
  405. ('Abs', {
  406. 'block': P.Abs(),
  407. 'desc_inputs': [[4]],
  408. 'desc_bprop': [[4]]}),
  409. ('CumSum', {
  410. 'block': P.CumSum(),
  411. 'desc_const': [0],
  412. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  413. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  414. ('ReduceSum_3', {
  415. 'block': P.ReduceSum(),
  416. 'desc_const': [0],
  417. 'desc_inputs': [[3, 2]],
  418. 'desc_bprop': [[2]]}),
  419. ('ReduceSum_4', {
  420. 'block': P.ReduceSum(keep_dims=True),
  421. 'desc_const': [0],
  422. 'desc_inputs': [[3, 2]],
  423. 'desc_bprop': [[1, 2]]}),
  424. ('ReduceSum_5', {
  425. 'block': P.ReduceSum(keep_dims=True),
  426. 'desc_inputs': [[2, 3, 4]],
  427. 'desc_bprop': [[1, 1, 1]]}),
  428. ('ReduceSum_6', {
  429. 'block': P.ReduceSum(),
  430. 'desc_inputs': [[2, 3, 4]],
  431. 'desc_bprop': [[1]]}),
  432. ('Sum_0', {
  433. 'block': P.ReduceSum(),
  434. 'desc_const': [(1,)],
  435. 'desc_inputs': [[3, 2]],
  436. 'desc_bprop': [[3]]}),
  437. ('Sum_1', {
  438. 'block': P.ReduceSum(keep_dims=True),
  439. 'desc_const': [(1,)],
  440. 'desc_inputs': [[3, 2]],
  441. 'desc_bprop': [[3, 1]]}),
  442. ('Sum_2', {
  443. 'block': P.ReduceSum(),
  444. 'desc_const': [(0, 1)],
  445. 'desc_inputs': [[3, 2]],
  446. 'desc_bprop': [[1]]}),
  447. ('Sum_3', {
  448. 'block': P.ReduceSum(),
  449. 'desc_const': [0],
  450. 'desc_inputs': [[3, 2]],
  451. 'desc_bprop': [[2]]}),
  452. ('Sum_4', {
  453. 'block': P.ReduceSum(keep_dims=True),
  454. 'desc_const': [0],
  455. 'desc_inputs': [[3, 2]],
  456. 'desc_bprop': [[1, 2]]}),
  457. ('Sum_5', {
  458. 'block': P.ReduceSum(keep_dims=True),
  459. 'desc_const': [()],
  460. 'desc_inputs': [[2, 3, 4]],
  461. 'desc_bprop': [[1, 1, 1]]}),
  462. ('Sum_6', {
  463. 'block': P.ReduceSum(),
  464. 'desc_const': [()],
  465. 'desc_inputs': [[2, 3, 4]],
  466. 'desc_bprop': [[1]]}),
  467. ('Sign', {
  468. 'block': P.Sign(),
  469. 'desc_inputs': [[3]],
  470. 'desc_bprop': [[3]]}),
  471. ('Round', {
  472. 'block': P.Round(),
  473. 'desc_inputs': [[3]],
  474. 'desc_bprop': [[3]]}),
  475. ('Atan2', {
  476. 'block': P.Atan2(),
  477. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  478. Tensor(np.array([1, 1]).astype(np.float32))],
  479. 'desc_bprop': [[2]]})
  480. ]
  481. test_case_nn_ops = [
  482. ('BiasAdd', {
  483. 'block': P.BiasAdd(),
  484. 'desc_inputs': [[1, 3, 3, 3], [3]],
  485. 'desc_bprop': [[1, 3, 3, 3]]}),
  486. ('BiasAddGrad', {
  487. 'block': G.BiasAddGrad(),
  488. 'desc_inputs': [[1, 3, 3, 3]],
  489. 'skip': ['backward']}),
  490. ('Gelu', {
  491. 'block': P.Gelu(),
  492. 'desc_inputs': [[1, 3, 4, 4]],
  493. 'desc_bprop': [[1, 3, 4, 4]]}),
  494. ('GeluGrad', {
  495. 'block': G.GeluGrad(),
  496. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  497. 'desc_bprop': [[2, 2]],
  498. 'skip': ['backward']}),
  499. ('Tanh', {
  500. 'block': P.Tanh(),
  501. 'desc_inputs': [[1, 3, 4, 4]],
  502. 'desc_bprop': [[1, 3, 4, 4]]}),
  503. ('TanhGrad', {
  504. 'block': G.TanhGrad(),
  505. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  506. 'desc_bprop': [[1, 3, 4, 4]],
  507. 'skip': ['backward']}),
  508. ('ReLU', {
  509. 'block': P.ReLU(),
  510. 'desc_inputs': [[1, 3, 4, 4]],
  511. 'desc_bprop': [[1, 3, 4, 4]]}),
  512. ('ReLU6', {
  513. 'block': P.ReLU6(),
  514. 'desc_inputs': [[1, 3, 4, 4]],
  515. 'desc_bprop': [[1, 3, 4, 4]]}),
  516. ('ReLUGrad', {
  517. 'block': G.ReluGrad(),
  518. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  519. 'skip': ['backward']}),
  520. ('Elu', {
  521. 'block': P.Elu(),
  522. 'desc_inputs': [[2, 3, 4]],
  523. 'desc_bprop': [[2, 3, 4]]}),
  524. ('EluGrad', {
  525. 'block': G.EluGrad(),
  526. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  527. 'desc_bprop': [[2, 3, 4]],
  528. 'skip': ['backward']}),
  529. ('Sigmoid', {
  530. 'block': P.Sigmoid(),
  531. 'desc_inputs': [[1, 3, 4, 4]],
  532. 'desc_bprop': [[1, 3, 4, 4]]}),
  533. ('MaxPool', {
  534. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  535. 'desc_inputs': [[100, 3, 28, 28]],
  536. 'desc_bprop': [[100, 3, 14, 14]]}),
  537. ('MaxPoolGrad', {
  538. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  539. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  540. 'desc_bprop': [[3, 4, 6, 6]],
  541. 'skip': ['backward']}),
  542. ('AvgPool', {
  543. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  544. 'desc_inputs': [[100, 3, 28, 28]],
  545. 'desc_bprop': [[100, 3, 14, 14]]}),
  546. ('AvgPoolGrad', {
  547. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  548. 'desc_const': [(3, 4, 6, 6)],
  549. 'const_first': True,
  550. 'desc_inputs': [[3, 4, 6, 6]],
  551. 'desc_bprop': [[3, 4, 6, 6]],
  552. 'skip': ['backward']}),
  553. ('MaxPoolWithArgmax', {
  554. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  555. 'desc_inputs': [[128, 32, 32, 64]],
  556. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  557. ('SoftmaxCrossEntropyWithLogits', {
  558. 'block': P.SoftmaxCrossEntropyWithLogits(),
  559. 'desc_inputs': [[1, 10], [1, 10]],
  560. 'desc_bprop': [[1], [1, 10]],
  561. 'skip': ['backward_exec']}),
  562. ('Flatten', {
  563. 'block': P.Flatten(),
  564. 'desc_inputs': [[128, 32, 32, 64]],
  565. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  566. ('LogSoftmax', {
  567. 'block': P.LogSoftmax(),
  568. 'desc_inputs': [[64, 2]],
  569. 'desc_bprop': [[160, 30522]]}),
  570. ('LogSoftmaxGrad', {
  571. 'block': G.LogSoftmaxGrad(),
  572. 'desc_inputs': [[16, 1234], [16, 1234]],
  573. 'desc_bprop': [[64, 2]],
  574. 'skip': ['backward']}),
  575. ('LayerNorm', {
  576. 'block': P.LayerNorm(),
  577. 'desc_inputs': [[2, 16], [16], [16]],
  578. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  579. ('LayerNormGrad', {
  580. 'block': G.LayerNormGrad(),
  581. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  582. 'desc_bprop': [[2, 16], [16], [16]],
  583. 'skip': ['backward']}),
  584. ('FusedBatchNorm', {
  585. 'block': P.FusedBatchNorm(),
  586. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  587. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  588. 'skip': []}),
  589. ('FusedBatchNormGrad', {
  590. 'block': G.FusedBatchNormGrad(),
  591. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  592. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  593. 'skip': ['backward']}),
  594. ('BatchNorm', {
  595. 'block': P.BatchNorm(),
  596. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  597. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  598. 'skip': []}),
  599. ('BatchNormGrad', {
  600. 'block': G.BatchNormGrad(),
  601. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  602. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  603. 'skip': ['backward']}),
  604. ('ApplyMomentum', {
  605. 'block': P.ApplyMomentum(),
  606. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  607. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  608. 'desc_bprop': [[128, 32, 32, 64]],
  609. 'skip': ['backward']}),
  610. ('TopK', {
  611. 'block': P.TopK(),
  612. 'desc_const': [5],
  613. 'desc_inputs': [[20, 20, 10]],
  614. 'desc_bprop': [[20, 20, 5]],
  615. 'skip': ['backward']}),
  616. ('GatherV2_0', {
  617. 'block': P.GatherV2(),
  618. 'desc_const': [0],
  619. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  620. 'desc_bprop': [[2, 1, 2]]}),
  621. ('GatherV2_1', {
  622. 'block': P.GatherV2(),
  623. 'desc_const': [2],
  624. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  625. 'desc_bprop': [[3, 1, 2]]}),
  626. ('GatherV2_2', {
  627. 'block': P.GatherV2(),
  628. 'desc_const': [0],
  629. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  630. 'desc_bprop': [[3, 2, 1, 3]]}),
  631. ('GatherV2_3', {
  632. 'block': P.GatherV2(),
  633. 'desc_const': [2],
  634. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  635. 'desc_bprop': [[3, 1, 3, 2]]}),
  636. ('GatherV2_4', {
  637. 'block': P.GatherV2(),
  638. 'desc_const': [1],
  639. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  640. 'desc_bprop': [[32, 1, 1024]]}),
  641. ('GatherV2_5', {
  642. 'block': P.GatherV2(),
  643. 'desc_const': [-1],
  644. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  645. 'desc_bprop': [[3, 1, 2]]}),
  646. ('GatherV2_6', {
  647. 'block': P.GatherV2(),
  648. 'desc_const': [0],
  649. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  650. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  651. ('UnsortedSegmentSum', {
  652. 'block': P.UnsortedSegmentSum(),
  653. 'desc_const': [1280],
  654. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  655. 'desc_bprop': [[8192,1024]],
  656. 'skip': ['backward']}),
  657. ('UnsortedSegmentSum_1', {
  658. 'block': P.UnsortedSegmentSum(),
  659. 'desc_const': [4],
  660. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  661. 'desc_bprop': [[4, 1, 3]],
  662. 'skip': ['backward']}),
  663. ('DropoutGenMask', {
  664. 'block': P.DropoutGenMask(),
  665. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  666. 'desc_inputs': [],
  667. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  668. 'skip': ['backward']}),
  669. ('DropoutDoMask', {
  670. 'block': P.DropoutDoMask(),
  671. 'desc_const': [Tensor(0.5)],
  672. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  673. 'desc_bprop': [[64, 12, 128, 128]]}),
  674. ('Dropout', {
  675. 'block': nn.Dropout(0.5),
  676. 'desc_inputs': [[64, 12, 128, 128]],
  677. 'desc_bprop': [[64, 12, 128, 128]]}),
  678. ('ReduceMean0', {
  679. 'block': P.ReduceMean(),
  680. 'desc_const': [(2,)],
  681. 'desc_inputs': [[3, 2, 2]],
  682. 'desc_bprop': [[3, 2]]}),
  683. ('ReduceMean1', {
  684. 'block': P.ReduceMean(),
  685. 'desc_const': [2],
  686. 'desc_inputs': [[3, 2, 2]],
  687. 'desc_bprop': [[3, 2]]}),
  688. ('All', {
  689. 'block': P.ReduceAll(),
  690. 'desc_const': [(1,)],
  691. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  692. 'desc_bprop': [[3]],
  693. 'skip': ['backward']}),
  694. ('DescConst', {
  695. 'block': Tensor(np.array([2], np.float32)),
  696. 'desc_inputs': [],
  697. 'desc_bprop': [[1]],
  698. 'skip': ['backward'],
  699. 'add_fake_input': True}),
  700. ('Fill', {
  701. 'block': P.Fill(),
  702. 'desc_const': [mstype.float32, (2, 3), 1.0],
  703. 'desc_inputs': [],
  704. 'desc_bprop': [[2, 3]],
  705. 'skip': ['backward'],
  706. 'add_fake_input': True}),
  707. ('OnesLike', {
  708. 'block': P.OnesLike(),
  709. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  710. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  711. }),
  712. ('ZerosLike', {
  713. 'block': P.ZerosLike(),
  714. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  715. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  716. }),
  717. ('Softmax', {
  718. 'block': P.Softmax(),
  719. 'desc_inputs': [[5, 5]],
  720. 'desc_bprop': [[5, 5]]}),
  721. ('DepthwiseConv2dNative_1', {
  722. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  723. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  724. 'desc_bprop': [[10, 30, 16, 16]]}),
  725. ('DepthwiseConv2dNative_2', {
  726. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  727. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  728. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  729. ('SigmoidCrossEntropyWithLogits', {
  730. 'block': P.SigmoidCrossEntropyWithLogits(),
  731. 'desc_inputs': [[128, 10], [128, 10]],
  732. 'desc_bprop': [[128, 10]]}),
  733. ('Pad', {
  734. 'block': P.Pad(((1, 2), (2, 3))),
  735. 'desc_inputs': [[7, 7]],
  736. 'desc_bprop': [[10, 12]]}),
  737. ('BinaryCrossEntropy', {
  738. 'block': P.BinaryCrossEntropy(),
  739. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  740. 'desc_bprop': []}),
  741. ('SparseApplyAdagrad', {
  742. 'block': P.SparseApplyAdagrad(0.5),
  743. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  744. 'desc_bprop': [3, 3],
  745. 'skip': ['backward']}),
  746. ('Flatten_1', {
  747. 'block': NetForFlatten(),
  748. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  749. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  750. 'skip': ['backward']}),
  751. ('Flatten_2', {
  752. 'block': NetForFlatten(),
  753. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  754. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  755. 'skip': ['backward']}),
  756. ('ArgmaxNet', {
  757. 'block': ArgmaxNet(),
  758. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  759. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  760. 'skip': ['backward']}),
  761. ('ArgminNet', {
  762. 'block': ArgminNet(),
  763. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  764. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  765. 'skip': ['backward']}),
  766. ('CumSumNet', {
  767. 'block': CumSumNet(),
  768. 'desc_const': [0],
  769. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  770. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  771. ('OneHot', {
  772. 'block': P.OneHot(),
  773. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  774. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  775. 'desc_bprop': [[64, 2]]}),
  776. ('ReduceProd_0', {
  777. 'block': P.ReduceProd(),
  778. 'desc_const': [0],
  779. 'desc_inputs': [[3, 2]],
  780. 'desc_bprop': [[2]]}),
  781. ('ReduceProd_1', {
  782. 'block': P.ReduceProd(keep_dims=True),
  783. 'desc_const': [0],
  784. 'desc_inputs': [[3, 2]],
  785. 'desc_bprop': [[1, 2]]}),
  786. ('CumProd', {
  787. 'block': P.CumProd(),
  788. 'desc_const': [0],
  789. 'desc_inputs': [[3, 2]],
  790. 'desc_bprop': [[3, 2]]}),
  791. ('ApplyFtrl', {
  792. 'block': P.ApplyFtrl(),
  793. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  794. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  795. 'desc_bprop': [3, 3],
  796. 'skip': ['backward']}),
  797. ('ApplyRMSProp', {
  798. 'block': P.ApplyRMSProp(),
  799. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  800. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  801. 'desc_bprop': [3, 3],
  802. 'skip': ['backward']}),
  803. ('ApplyCenteredRMSProp', {
  804. 'block': P.ApplyCenteredRMSProp(),
  805. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  806. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  807. 'desc_bprop': [3, 3],
  808. 'skip': ['backward']}),
  809. ]
  810. test_case_array_ops = [
  811. ('SpaceToDepth', {
  812. 'block': P.SpaceToDepth(2),
  813. 'desc_inputs': [[1, 3, 2, 2]],
  814. 'desc_bprop': [[1, 12, 1, 1]]}),
  815. ('DepthToSpace', {
  816. 'block': P.DepthToSpace(2),
  817. 'desc_inputs': [[1, 12, 1, 1]],
  818. 'desc_bprop': [[1, 3, 2, 2]]}),
  819. ('Split', {
  820. 'block': P.Split(1, 2),
  821. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  822. 'skip': ['backward']}),
  823. ('Argmax', {
  824. 'block': P.Argmax(),
  825. 'desc_inputs': [[128, 32, 32, 64]],
  826. 'desc_bprop': [0],
  827. 'skip': ['backward']}),
  828. ('Argmin', {
  829. 'block': P.Argmin(),
  830. 'desc_inputs': [[128, 32, 32, 64]],
  831. 'desc_bprop': [1],
  832. 'skip': ['backward']}),
  833. ('ArgMaxWithValue', {
  834. 'block': P.ArgMaxWithValue(),
  835. 'desc_inputs': [[128, 32, 32, 64]],
  836. 'desc_bprop': [[1], [1]],
  837. 'skip': ['backward']}),
  838. ('ArgMinWithValue', {
  839. 'block': P.ArgMinWithValue(),
  840. 'desc_inputs': [[128, 32, 32, 64]],
  841. 'desc_bprop': [[1], [1]],
  842. 'skip': ['backward']}),
  843. ('Transpose_dim3', {
  844. 'block': P.Transpose(),
  845. 'desc_const': [(0, 2, 1)],
  846. 'desc_inputs': [[1, 2, 3]],
  847. 'desc_bprop': [[1, 3, 2]]}),
  848. ('Transpose_dim4', {
  849. 'block': P.Transpose(),
  850. 'desc_const': [(0, 1, 2, 3)],
  851. 'desc_inputs': [[1, 2, 3, 4]],
  852. 'desc_bprop': [[1, 2, 4, 3]]}),
  853. ('AddN', {
  854. 'block': NetForTupleInput(P.AddN()),
  855. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  856. 'desc_bprop': [[2, 3, 3, 5]],
  857. 'skip': ['backward']}),
  858. ('Shape', {
  859. 'block': P.Shape(),
  860. 'desc_inputs': [[3, 3, 2, 2]],
  861. 'skip': ['backward']}),
  862. ('Reshape', {
  863. 'block': P.Reshape(),
  864. 'desc_const': [(64,)],
  865. 'desc_inputs': [[64, 1]],
  866. 'desc_bprop': [[64]]}),
  867. ('Cast', {
  868. 'block': P.Cast(),
  869. 'desc_const': [mstype.int32],
  870. 'desc_inputs': [[2, 3, 4, 5]],
  871. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  872. ('ExpandDims', {
  873. 'block': P.ExpandDims(),
  874. 'desc_const': [0],
  875. 'desc_inputs': [[2, 2]],
  876. 'desc_bprop': [[1, 2, 2]]}),
  877. ('ExpandDims_1', {
  878. 'block': P.ExpandDims(),
  879. 'desc_const': [-1],
  880. 'desc_inputs': [[2, 2]],
  881. 'desc_bprop': [[2, 2, 1]]}),
  882. ('Squeeze', {
  883. 'block': P.Squeeze(2),
  884. 'desc_inputs': [[3, 2, 1]],
  885. 'desc_bprop': [[3, 2]]}),
  886. ('Squeeze_0', {
  887. 'block': P.Squeeze(),
  888. 'desc_inputs': [[3, 1, 2, 1]],
  889. 'desc_bprop': [[3, 2]]}),
  890. ('Squeeze_1', {
  891. 'block': P.Squeeze(),
  892. 'desc_inputs': [[1, 1, 1, 1]],
  893. 'desc_bprop': [1.0],
  894. 'skip': ['backward']}),
  895. ('Squeeze_2', {
  896. 'block': P.Squeeze((2, 3)),
  897. 'desc_inputs': [[3, 2, 1, 1]],
  898. 'desc_bprop': [[3, 2]]}),
  899. ('Size', {
  900. 'block': P.Size(),
  901. 'desc_inputs': [[2, 3, 5]],
  902. 'skip': ['backward']}),
  903. ('Tile_0', {
  904. 'block': P.Tile(),
  905. 'desc_const': [(1, 2)],
  906. 'desc_inputs': [[64, 1]],
  907. 'desc_bprop': [[64, 2]]}),
  908. ('Tile_1', {
  909. 'block': P.Tile(),
  910. 'desc_const': [(1, 1)],
  911. 'desc_inputs': [[64, 1]],
  912. 'desc_bprop': [[64, 1]]}),
  913. ('Tile_2', {
  914. 'block': P.Tile(),
  915. 'desc_const': [(2, 1, 1, 2)],
  916. 'desc_inputs': [[2, 2, 2]],
  917. 'desc_bprop': [[2, 2, 2, 4]]}),
  918. ('ConcatV2_0', {
  919. 'block': P.Concat(),
  920. 'desc_inputs': [
  921. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  922. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  923. 'desc_bprop': [[4, 2]]}),
  924. ('ConcatV2_1', {
  925. 'block': P.Concat(axis=2),
  926. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  927. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  928. 'desc_bprop': [[2, 1, 5]]}),
  929. ('ConcatV2_2', {
  930. 'block': NetForConcat(),
  931. 'desc_inputs': [[2, 2]],
  932. 'desc_bprop': [[4, 2]]}),
  933. ('ConcatV2_3', {
  934. 'block': NetForConcat1(),
  935. 'desc_inputs': [[2, 2], [2, 2]],
  936. 'desc_bprop': [[4, 2]]}),
  937. ('ConcatV2_4', {
  938. 'block': P.Concat(axis=0),
  939. 'desc_inputs': [
  940. (Tensor(np.ones((3, 2, 3), np.float32)),
  941. Tensor(np.ones((5, 2, 3), np.float32)),
  942. Tensor(np.ones((6, 2, 3), np.float32)))],
  943. 'desc_bprop': [[14, 2, 3]]}),
  944. ('ConcatV2_5', {
  945. 'block': P.Concat(axis=-1),
  946. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  947. Tensor(np.array([1], np.float32)),
  948. Tensor(np.array([1], np.float32)))],
  949. 'desc_bprop': [[3,]]}),
  950. ('Pack_0', {
  951. 'block': NetForPackInput(P.Pack()),
  952. 'desc_inputs':[[2, 2], [2, 2], [2, 2]],
  953. 'desc_bprop':[[3, 2, 2]],
  954. }),
  955. ('Pack_1', {
  956. 'block': NetForPackInput(P.Pack(axis=-2)),
  957. 'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  958. 'desc_bprop':[[3, 2, 3, 3]],
  959. }),
  960. ('Pack_2', {
  961. 'block': NetForPackInput(P.Pack()),
  962. 'desc_inputs':[[2, 2]],
  963. 'desc_bprop':[[2, 2, 2]],
  964. }),
  965. ('Pack_3', {
  966. 'block': NetForPackInput(P.Pack()),
  967. 'desc_inputs':[[128, 128], [128, 128]],
  968. 'desc_bprop':[[2, 128, 128]],
  969. }),
  970. ('Unpack_0', {
  971. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  972. 'desc_inputs':[[2, 4]],
  973. 'desc_bprop':[[4], [4]],
  974. }),
  975. ('Unpack_1', {
  976. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  977. 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
  978. 'desc_bprop':[[1], [1], [1]],
  979. }),
  980. ('Diag', {
  981. 'block': P.Diag(),
  982. 'desc_inputs': [[4]],
  983. 'desc_bprop': [[4, 4]],
  984. }),
  985. ('DiagPart', {
  986. 'block': P.DiagPart(),
  987. 'desc_inputs': [[4, 4]],
  988. 'desc_bprop': [[4]],
  989. }),
  990. ('SpaceToBatch_1', {
  991. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  992. 'desc_inputs': [[1, 3, 2, 2]],
  993. 'desc_bprop': [[4, 3, 1, 1]],
  994. }),
  995. ('SpaceToBatch_2', {
  996. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  997. 'desc_inputs': [[1, 3, 2, 2]],
  998. 'desc_bprop': [[4, 3, 2, 4]],
  999. }),
  1000. ('BatchToSpace_1', {
  1001. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1002. 'desc_inputs': [[4, 3, 1, 1]],
  1003. 'desc_bprop': [[1, 3, 2, 2]],
  1004. }),
  1005. ('BatchToSpace_2', {
  1006. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1007. 'desc_inputs': [[4, 3, 1, 1]],
  1008. 'desc_bprop': [[1, 3, 2, 1]],
  1009. }),
  1010. ]
  1011. test_case_other_ops = [
  1012. ('ScalarLog', {
  1013. 'block': F.scalar_log,
  1014. 'desc_const': [0.0],
  1015. 'desc_inputs': [],
  1016. 'desc_bprop': [1],
  1017. 'skip': ['backward']}),
  1018. ('BoundingBoxEncode', {
  1019. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1020. 'desc_inputs': [[256, 4], [256, 4]],
  1021. 'desc_bprop': [[256, 4]],
  1022. 'skip': ['backward']}),
  1023. ('BoundingBoxDecode', {
  1024. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1025. 'desc_inputs': [[256, 4], [256, 4]],
  1026. 'desc_bprop': [[256, 4]],
  1027. 'skip': ['backward']}),
  1028. ('GatherNd', {
  1029. 'block': P.GatherNd(),
  1030. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1031. Tensor(np.ones((2, 4), np.int32))),
  1032. 'desc_bprop': [[2]]}),
  1033. ('ScatterNdUpdate', {
  1034. 'block': P.ScatterNdUpdate(),
  1035. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1036. Tensor(np.ones((2, 2), np.int32)),
  1037. Tensor(np.ones((2,), np.float32))),
  1038. 'desc_bprop': [[2, 3]]}),
  1039. ('ScatterNd', {
  1040. 'block': P.ScatterNd(),
  1041. 'desc_const': [(3, 3)],
  1042. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1043. Tensor(np.ones((2,), np.int32))),
  1044. 'desc_bprop': [[3, 3]]}),
  1045. ('SmoothL1Loss', {
  1046. 'block': P.SmoothL1Loss(),
  1047. 'desc_inputs': [[256, 4], [256, 4]],
  1048. 'desc_bprop': [[256, 4]]}),
  1049. ('IOU', {
  1050. 'block': P.IOU(),
  1051. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1052. 'desc_bprop': [[128, 256]]}),
  1053. ('Summary', {
  1054. 'block': SummaryNet(),
  1055. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1056. Tensor(np.array([1.2]).astype(np.float32))],
  1057. 'skip': ['backward']}),
  1058. ]
  1059. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1060. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1061. # use -k to select certain testcast
  1062. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1063. test_exec_case = test_case
  1064. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1065. 'backward' not in x[1]['skip'], test_case)
  1066. import mindspore.context as context
  1067. @non_graph_engine
  1068. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1069. def test_exec():
  1070. context.set_context(mode=context.GRAPH_MODE)
  1071. return test_exec_case
  1072. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1073. def test_backward_exec():
  1074. context.set_context(mode=context.GRAPH_MODE)
  1075. return test_backward_exec_case
  1076. raise_set = [
  1077. ('Cast_Error', {
  1078. 'block': (P.Cast(), {'exception': TypeError}),
  1079. 'desc_const': [mstype.int32],
  1080. 'desc_inputs': ['wrong input'],
  1081. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1082. ('Maximum_Error', {
  1083. 'block': (P.Maximum(), {'exception': TypeError}),
  1084. 'desc_const': [(1, 2, 3)],
  1085. 'desc_inputs': [[2, 3, 3, 5]],
  1086. 'desc_bprop': [[2, 3, 3, 5]]}),
  1087. ('Shape_error', {
  1088. 'block': (P.Shape(), {'exception': TypeError}),
  1089. 'desc_inputs': [(64, 1)],
  1090. 'desc_bprop': [[64]]}),
  1091. ('Flatten_Error', {
  1092. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1093. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1094. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1095. ]
  1096. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1097. def test_check_exception():
  1098. return raise_set