You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 94 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.ops.composite as C
  20. from mindspore import Tensor
  21. from mindspore import ops, Parameter, context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.ops import functional as F
  24. from mindspore.ops import operations as P
  25. from mindspore.ops.operations import _grad_ops as G
  26. from mindspore.ops.operations import _inner_ops as inner
  27. from ..ut_filter import non_graph_engine
  28. from ....mindspore_test_framework.mindspore_test import mindspore_test
  29. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  30. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  31. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  32. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  33. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  34. from ....ops_common import convert
  35. grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
  36. class InputBackward(nn.Cell):
  37. def __init__(self, network):
  38. super(InputBackward, self).__init__()
  39. self.network = network
  40. self.network.set_train()
  41. self.grad = grad_all_with_sens
  42. def construct(self, x1, x2, x3, sens):
  43. return self.grad(self.network)(x1, x2, x3, sens)
  44. class NetForTupleInput(nn.Cell):
  45. def __init__(self, op):
  46. super(NetForTupleInput, self).__init__()
  47. self.op = op
  48. def construct(self, x1, x2):
  49. return self.op((x1, x2))
  50. class StridedSlicessdNet(nn.Cell):
  51. def __init__(self):
  52. super(StridedSlicessdNet, self).__init__()
  53. self.rank = P.Rank()
  54. def construct(self, x1):
  55. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  56. class NetForConcat(nn.Cell):
  57. def __init__(self):
  58. super(NetForConcat, self).__init__()
  59. self.concat = P.Concat()
  60. def construct(self, x1):
  61. return self.concat((x1, x1))
  62. class NetForConcat1(nn.Cell):
  63. def __init__(self):
  64. super(NetForConcat1, self).__init__()
  65. self.concat = P.Concat()
  66. def construct(self, x1, x2):
  67. return self.concat((x1, x2))
  68. class NetForPackInput(nn.Cell):
  69. def __init__(self, op):
  70. super(NetForPackInput, self).__init__()
  71. self.op = op
  72. self.mul = P.Mul()
  73. def construct(self, *args):
  74. t = ()
  75. for element in args:
  76. t = t + (self.mul(element, element),)
  77. return self.op(t)
  78. class NetForUnpackInput(nn.Cell):
  79. def __init__(self, op):
  80. super(NetForUnpackInput, self).__init__()
  81. self.op = op
  82. self.mul = P.Mul()
  83. def construct(self, x1):
  84. return self.op((self.mul(x1, x1)))
  85. class NetForFlatten(nn.Cell):
  86. def __init__(self):
  87. super(NetForFlatten, self).__init__()
  88. self.flatten = P.Flatten()
  89. def construct(self, x, y):
  90. return self.flatten(x) + y
  91. class NetForFlatten0D(nn.Cell):
  92. def __init__(self):
  93. super(NetForFlatten0D, self).__init__()
  94. self.flatten = P.Flatten()
  95. def construct(self, x):
  96. return self.flatten(x)
  97. class NetForFlattenComposed(nn.Cell):
  98. # make flatten op together with other ops for testing flatten grad
  99. def __init__(self):
  100. super(NetForFlattenComposed, self).__init__()
  101. self.flatten = P.Flatten()
  102. def construct(self, x, y):
  103. return self.flatten(x + x) + y
  104. class ArgmaxNet(nn.Cell):
  105. def __init__(self):
  106. super(ArgmaxNet, self).__init__()
  107. self.argmax = P.Argmax(axis=1)
  108. def construct(self, input_):
  109. return self.argmax(input_)
  110. class ArgminNet(nn.Cell):
  111. def __init__(self):
  112. super(ArgminNet, self).__init__()
  113. self.argmin = P.Argmin(axis=1)
  114. def construct(self, input_):
  115. return self.argmin(input_)
  116. class CumSumNet(nn.Cell):
  117. def __init__(self):
  118. super(CumSumNet, self).__init__()
  119. self.cumsum = P.CumSum()
  120. self.axis = 1
  121. def construct(self, input_):
  122. return self.cumsum(input_, self.axis)
  123. class SummaryNet(nn.Cell):
  124. def __init__(self):
  125. super(SummaryNet, self).__init__()
  126. self.s = P.ScalarSummary()
  127. self.add = P.TensorAdd()
  128. def construct(self, x, y):
  129. self.s("x1", x)
  130. return self.add(x, y)
  131. class HistogramSummaryNet(nn.Cell):
  132. def __init__(self):
  133. super(HistogramSummaryNet, self).__init__()
  134. self.summary = P.HistogramSummary()
  135. self.add = P.TensorAdd()
  136. def construct(self, x, y):
  137. out = self.add(x, y)
  138. string_in = "out"
  139. self.summary(string_in, out)
  140. return out
  141. class ScatterUpdate(nn.Cell):
  142. """ScatterUpdate net definition"""
  143. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  144. super(ScatterUpdate, self).__init__()
  145. self.scatter_update = P.ScatterUpdate(use_locking)
  146. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  147. def construct(self, indices, updates):
  148. out = self.scatter_update(self.ref, indices, updates)
  149. return out
  150. class ScatterMax(nn.Cell):
  151. """ScatterMax net definition"""
  152. def __init__(self, dtype=np.float32, use_locking=False):
  153. super(ScatterMax, self).__init__()
  154. self.scatter_max = P.ScatterMax(use_locking)
  155. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype)), name="ref")
  156. def construct(self, indices, updates):
  157. out = self.scatter_max(self.ref, indices, updates)
  158. return out
  159. class ScatterMin(nn.Cell):
  160. """ScatterMin net definition"""
  161. def __init__(self, dtype=np.float32, use_locking=False):
  162. super(ScatterMin, self).__init__()
  163. self.scatter_min = P.ScatterMin(use_locking)
  164. self.ref = Parameter(Tensor(np.array([[-1.0, 2.0, 3.0], [-4.0, 1.0, 6.0]], dtype)), name="ref")
  165. def construct(self, indices, updates):
  166. out = self.scatter_min(self.ref, indices, updates)
  167. return out
  168. class ScatterAdd(nn.Cell):
  169. """ScatterAdd net definition"""
  170. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  171. super(ScatterAdd, self).__init__()
  172. self.scatter_add = P.ScatterAdd(use_locking)
  173. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  174. def construct(self, indices, updates):
  175. out = self.scatter_add(self.ref, indices, updates)
  176. return out
  177. class ScatterNonAliasingAdd(nn.Cell):
  178. """ScatterNonAliasingAdd net definition"""
  179. def __init__(self, ref_shape, dtype=np.float32):
  180. super(ScatterNonAliasingAdd, self).__init__()
  181. self.scatter_no_aliasing_add = P.ScatterNonAliasingAdd()
  182. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  183. def construct(self, indices, updates):
  184. out = self.scatter_no_aliasing_add(self.ref, indices, updates)
  185. return out
  186. class ScatterNdSub(nn.Cell):
  187. """ScatterNdSub net definition"""
  188. def __init__(self, ref_shape, dtype=np.float32):
  189. super(ScatterNdSub, self).__init__()
  190. self.scatter_nd_sub = P.ScatterNdSub()
  191. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  192. def construct(self, indices, updates):
  193. out = self.scatter_nd_sub(self.ref, indices, updates)
  194. return out
  195. class ScatterNdAdd(nn.Cell):
  196. """ScatterNdAdd net definition"""
  197. def __init__(self, ref_shape, dtype=np.float32):
  198. super(ScatterNdAdd, self).__init__()
  199. self.scatter_nd_add = P.ScatterNdAdd()
  200. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  201. def construct(self, indices, updates):
  202. out = self.scatter_nd_add(self.ref, indices, updates)
  203. return out
  204. class ScatterSub(nn.Cell):
  205. """ScatterSub net definition"""
  206. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  207. super(ScatterSub, self).__init__()
  208. self.scatter_sub = P.ScatterSub(use_locking)
  209. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  210. def construct(self, indices, updates):
  211. out = self.scatter_sub(self.ref, indices, updates)
  212. return out
  213. class ScatterMul(nn.Cell):
  214. """ScatterMul net definition"""
  215. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  216. super(ScatterMul, self).__init__()
  217. self.scatter_mul = P.ScatterMul(use_locking)
  218. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
  219. def construct(self, indices, updates):
  220. out = self.scatter_mul(self.ref, indices, updates)
  221. return out
  222. class ScatterDiv(nn.Cell):
  223. """ScatterDiv net definition"""
  224. def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
  225. super(ScatterDiv, self).__init__()
  226. self.scatter_div = P.ScatterDiv(use_locking)
  227. self.ref = Parameter(Tensor(np.ones(ref_shape, dtype) * 10), name="ref")
  228. def construct(self, indices, updates):
  229. out = self.scatter_div(self.ref, indices, updates)
  230. return out
  231. class ApplyFtrlNet(nn.Cell):
  232. def __init__(self):
  233. super(ApplyFtrlNet, self).__init__()
  234. self.apply_ftrl = P.ApplyFtrl()
  235. self.lr = 0.001
  236. self.l1 = 0.0
  237. self.l2 = 0.0
  238. self.lr_power = -0.5
  239. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  240. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  241. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  242. def construct(self, grad):
  243. out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
  244. return out
  245. class SparseApplyFtrlNet(nn.Cell):
  246. def __init__(self):
  247. super(SparseApplyFtrlNet, self).__init__()
  248. self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
  249. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  250. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  251. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  252. def construct(self, grad, indices):
  253. out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
  254. return out
  255. class SparseApplyFtrlV2Net(nn.Cell):
  256. def __init__(self):
  257. super(SparseApplyFtrlV2Net, self).__init__()
  258. self.sparse_apply_ftrl_v2 = P.SparseApplyFtrlV2(lr=0.001, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5)
  259. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  260. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  261. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  262. def construct(self, grad, indices):
  263. out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices)
  264. return out
  265. class SparseApplyProximalAdagradNet(nn.Cell):
  266. def __init__(self):
  267. super(SparseApplyProximalAdagradNet, self).__init__()
  268. self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
  269. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  270. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  271. self.lr = 0.01
  272. self.l1 = 0.0
  273. self.l2 = 0.0
  274. def construct(self, grad, indices):
  275. out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
  276. return out
  277. class ApplyProximalAdagradNet(nn.Cell):
  278. def __init__(self):
  279. super(ApplyProximalAdagradNet, self).__init__()
  280. self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
  281. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  282. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  283. self.lr = 0.01
  284. self.l1 = 0.0
  285. self.l2 = 0.0
  286. def construct(self, grad):
  287. out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
  288. return out
  289. class ApplyAdaMaxNet(nn.Cell):
  290. def __init__(self):
  291. super(ApplyAdaMaxNet, self).__init__()
  292. self.apply_ada_max = P.ApplyAdaMax()
  293. self.beta1_power = 0.9
  294. self.lr = 0.001
  295. self.beta1 = 0.9
  296. self.beta2 = 0.99
  297. self.epsilon = 1e-10
  298. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  299. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  300. self.v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v")
  301. def construct(self, grad):
  302. out = self.apply_ada_max(self.var, self.m, self.v, self.beta1_power, self.lr,
  303. self.beta1, self.beta2, self.epsilon, grad)
  304. return out
  305. class ApplyAdadeltaNet(nn.Cell):
  306. def __init__(self):
  307. super(ApplyAdadeltaNet, self).__init__()
  308. self.apply_adadelta = P.ApplyAdadelta()
  309. self.lr = 0.001
  310. self.rho = 0.0
  311. self.epsilon = 1e-6
  312. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  313. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  314. self.accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update")
  315. def construct(self, grad):
  316. out = self.apply_adadelta(self.var, self.accum, self.accum_update, self.lr, self.rho, self.epsilon, grad)
  317. return out
  318. class ApplyAdagradNet(nn.Cell):
  319. def __init__(self):
  320. super(ApplyAdagradNet, self).__init__()
  321. self.apply_adagrad = P.ApplyAdagrad()
  322. self.lr = 0.001
  323. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  324. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  325. def construct(self, grad):
  326. out = self.apply_adagrad(self.var, self.accum, self.lr, grad)
  327. return out
  328. class ApplyAdagradV2Net(nn.Cell):
  329. def __init__(self):
  330. super(ApplyAdagradV2Net, self).__init__()
  331. self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
  332. self.lr = 0.001
  333. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  334. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  335. def construct(self, grad):
  336. out = self.apply_adagrad_v2(self.var, self.accum, self.lr, grad)
  337. return out
  338. class ApplyAddSignNet(nn.Cell):
  339. def __init__(self):
  340. super(ApplyAddSignNet, self).__init__()
  341. self.apply_add_sign = P.ApplyAddSign()
  342. self.lr = 0.001
  343. self.alpha = 1.0
  344. self.sign_decay = 0.99
  345. self.beta = 0.99
  346. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  347. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  348. def construct(self, grad):
  349. out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad)
  350. return out
  351. class ApplyPowerSignNet(nn.Cell):
  352. def __init__(self):
  353. super(ApplyPowerSignNet, self).__init__()
  354. self.apply_power_sign = P.ApplyPowerSign()
  355. self.lr = 0.001
  356. self.logbase = np.e
  357. self.sign_decay = 0.99
  358. self.beta = 0.99
  359. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  360. self.m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
  361. def construct(self, grad):
  362. out = self.apply_power_sign(self.var, self.m, self.lr, self.logbase, self.sign_decay, self.beta, grad)
  363. return out
  364. class ApplyGradientDescentNet(nn.Cell):
  365. def __init__(self):
  366. super(ApplyGradientDescentNet, self).__init__()
  367. self.apply_gradient_descent = P.ApplyGradientDescent()
  368. self.alpha = 0.001
  369. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  370. def construct(self, delta):
  371. out = self.apply_gradient_descent(self.var, self.alpha, delta)
  372. return out
  373. class ApplyProximalGradientDescentNet(nn.Cell):
  374. def __init__(self):
  375. super(ApplyProximalGradientDescentNet, self).__init__()
  376. self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent()
  377. self.alpha = 0.001
  378. self.l1 = 0.0
  379. self.l2 = 0.0
  380. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  381. def construct(self, delta):
  382. out = self.apply_proximal_gradient_descent(self.var, self.alpha, self.l1, self.l2, delta)
  383. return out
  384. class SparseApplyAdagradNet(nn.Cell):
  385. def __init__(self):
  386. super(SparseApplyAdagradNet, self).__init__()
  387. self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01)
  388. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  389. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  390. def construct(self, grad, indices):
  391. out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
  392. return out
  393. class SparseApplyAdagradV2Net(nn.Cell):
  394. def __init__(self):
  395. super(SparseApplyAdagradV2Net, self).__init__()
  396. self.sparse_apply_adagrad_v2 = P.SparseApplyAdagradV2(lr=0.01, epsilon=0.001)
  397. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  398. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  399. def construct(self, grad, indices):
  400. out = self.sparse_apply_adagrad_v2(self.var, self.accum, grad, indices)
  401. return out
  402. class ApplyRMSNet(nn.Cell):
  403. def __init__(self):
  404. super(ApplyRMSNet, self).__init__()
  405. self.apply_rms = P.ApplyRMSProp()
  406. self.lr = 0.001
  407. self.rho = 0.0
  408. self.momentum = 0.0
  409. self.epsilon = 1e-10
  410. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  411. self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
  412. self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")
  413. def construct(self, grad):
  414. out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
  415. return out
  416. class InplaceAddNet(nn.Cell):
  417. def __init__(self):
  418. super(InplaceAddNet, self).__init__()
  419. self.inplace_add = P.InplaceAdd(indices=(0, 1))
  420. def construct(self, x, v):
  421. out = self.inplace_add(x, v)
  422. return out
  423. class InplaceSubNet(nn.Cell):
  424. def __init__(self):
  425. super(InplaceSubNet, self).__init__()
  426. self.inplace_sub = P.InplaceSub(indices=(0, 1))
  427. def construct(self, x, v):
  428. out = self.inplace_sub(x, v)
  429. return out
  430. class NormalNet(nn.Cell):
  431. def __init__(self, shape=None, seed=0):
  432. super(NormalNet, self).__init__()
  433. self.shape = shape
  434. self.seed = seed
  435. def construct(self, mean, stddev):
  436. out = C.normal(self.shape, mean, stddev, self.seed)
  437. return out
  438. class LaplaceNet(nn.Cell):
  439. def __init__(self, shape=None, seed=0):
  440. super(LaplaceNet, self).__init__()
  441. self.shape = shape
  442. self.seed = seed
  443. def construct(self, mean, lambda_param):
  444. out = C.laplace(self.shape, mean, lambda_param, self.seed)
  445. return out
  446. class GammaNet(nn.Cell):
  447. def __init__(self, shape=None, seed=0):
  448. super(GammaNet, self).__init__()
  449. self.shape = shape
  450. self.seed = seed
  451. def construct(self, alpha, beta):
  452. out = C.gamma(self.shape, alpha, beta, self.seed)
  453. return out
  454. class PoissonNet(nn.Cell):
  455. def __init__(self, shape=None, seed=0):
  456. super(PoissonNet, self).__init__()
  457. self.shape = shape
  458. self.seed = seed
  459. def construct(self, mean):
  460. out = C.poisson(self.shape, mean, self.seed)
  461. return out
  462. class UniformNet(nn.Cell):
  463. def __init__(self, shape=None, seed=0):
  464. super(UniformNet, self).__init__()
  465. self.shape = shape
  466. self.seed = seed
  467. def construct(self, a, b):
  468. out = C.uniform(self.shape, a, b, self.seed)
  469. return out
  470. class CTCGreedyDecoderNet(nn.Cell):
  471. def __init__(self):
  472. super(CTCGreedyDecoderNet, self).__init__()
  473. self.ctc_greedy_decoder = P.CTCGreedyDecoder()
  474. self.assert_op = P.Assert(300)
  475. def construct(self, inputs, sequence_length):
  476. out = self.ctc_greedy_decoder(inputs, sequence_length)
  477. self.assert_op(True, (out[0], out[1], out[2], out[3]))
  478. return out[2]
  479. class StridedSliceNet(nn.Cell):
  480. def __init__(self):
  481. super(StridedSliceNet, self).__init__()
  482. self.begins = (1, 2, 3, 2, 1)
  483. self.ends = (5, 6, 7, 8, 9)
  484. self.strides = (1, 2, 3, 2, 1)
  485. self.strided_slice_0 = P.StridedSlice(begin_mask=3, end_mask=5, ellipsis_mask=4,
  486. shrink_axis_mask=2, new_axis_mask=8)
  487. self.strided_slice_1 = P.StridedSlice(begin_mask=5, end_mask=2, ellipsis_mask=2,
  488. shrink_axis_mask=6, new_axis_mask=10)
  489. self.strided_slice_2 = P.StridedSlice(begin_mask=3, end_mask=3, ellipsis_mask=4,
  490. shrink_axis_mask=5, new_axis_mask=13)
  491. self.strided_slice_3 = P.StridedSlice(begin_mask=0, end_mask=0, ellipsis_mask=4,
  492. shrink_axis_mask=12, new_axis_mask=15)
  493. self.const_0 = Tensor(np.ones([6, 8, 9, 1, 8], np.float32))
  494. self.const_1 = Tensor(np.ones([5, 7, 8, 1, 8], np.float32))
  495. self.const_2 = Tensor(np.ones([1, 3, 7, 8, 9, 1, 8], np.float32))
  496. self.const_3 = Tensor(np.ones([1, 1, 6, 7, 8, 9, 1, 8], np.float32))
  497. def construct(self, x):
  498. out_0 = self.strided_slice_0(x, self.begins, self.ends, self.strides) + self.const_0
  499. out_1 = self.strided_slice_1(x, self.begins, self.ends, self.strides) + self.const_1
  500. out_2 = self.strided_slice_2(x, self.begins, self.ends, self.strides) + self.const_2
  501. out_3 = self.strided_slice_3(x, self.begins, self.ends, self.strides) + self.const_3
  502. return out_0, out_1, out_2, out_3
  503. def test_strided_slice_const():
  504. class StridedSLiceConstNet(nn.Cell):
  505. """StridedSLiceConstNet net definition"""
  506. def __init__(self):
  507. super(StridedSLiceConstNet, self).__init__()
  508. self.begins = (0, 2, -5, 2, 1)
  509. self.ends = (0, 6, 9, 8, 9)
  510. self.strides = (1, 2, 1, 2, 1)
  511. self.strided_slice = P.StridedSlice(begin_mask=2,
  512. end_mask=6,
  513. ellipsis_mask=4,
  514. shrink_axis_mask=6,
  515. new_axis_mask=18)
  516. def construct(self, x):
  517. out = self.strided_slice(x, self.begins, self.ends, self.strides)
  518. return out
  519. net = StridedSLiceConstNet()
  520. context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
  521. x = Tensor(np.ones([6, 7, 8, 9, 10]), mstype.float32)
  522. ret = net(x)
  523. assert ret.shape == (0, 1, 7, 8, 9, 3, 1)
  524. assert (ret.asnumpy() == np.array([], np.float32).reshape([0, 1, 7, 8, 9, 3, 1])).all()
  525. class ParallelConcatNet(nn.Cell):
  526. def __init__(self):
  527. super(ParallelConcatNet, self).__init__()
  528. self.parallel_concat = P.ParallelConcat()
  529. def construct(self, x1, x2):
  530. return self.parallel_concat((x1, x2))
  531. class BasicLSTMCellNet(nn.Cell):
  532. """ BasicLSTMCellNet definition """
  533. def __init__(self):
  534. super(BasicLSTMCellNet, self).__init__()
  535. self.lstm = P.BasicLSTMCell()
  536. def construct(self, x, h, c, w, b):
  537. return self.lstm(x, h, c, w, b)
  538. class EditDistance(nn.Cell):
  539. def __init__(self, hypothesis_shape, truth_shape, normalize=True):
  540. super(EditDistance, self).__init__()
  541. self.edit_distance = P.EditDistance(normalize)
  542. self.hypothesis_shape = hypothesis_shape
  543. self.truth_shape = truth_shape
  544. def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values):
  545. return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape,
  546. truth_indices, truth_values, self.truth_shape)
  547. test_case_math_ops = [
  548. ('BitwiseAnd', {
  549. 'block': P.BitwiseAnd(),
  550. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  551. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  552. 'skip': ['backward']}),
  553. ('BitwiseAnd_1', {
  554. 'block': P.BitwiseAnd(),
  555. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  556. Tensor(np.array([1, 1, 1]), mstype.int16)],
  557. 'skip': ['backward']}),
  558. ('BitwiseOr', {
  559. 'block': P.BitwiseOr(),
  560. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  561. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  562. 'skip': ['backward']}),
  563. ('BitwiseOr_1', {
  564. 'block': P.BitwiseOr(),
  565. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  566. Tensor(np.array([1, 1, 1]), mstype.int16)],
  567. 'skip': ['backward']}),
  568. ('BitwiseXor', {
  569. 'block': P.BitwiseXor(),
  570. 'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
  571. Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
  572. 'skip': ['backward']}),
  573. ('BitwiseXor_1', {
  574. 'block': P.BitwiseXor(),
  575. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),
  576. Tensor(np.array([1, 1, 1]), mstype.int16)],
  577. 'skip': ['backward']}),
  578. ('Neg', {
  579. 'block': P.Neg(),
  580. 'desc_inputs': [[1, 3, 4, 4]],
  581. 'desc_bprop': [[1, 3, 4, 4]]}),
  582. ('Sub', {
  583. 'block': P.Sub(),
  584. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  585. 'desc_bprop': [[2, 3, 3, 5]]}),
  586. ('TensorAdd', {
  587. 'block': P.TensorAdd(),
  588. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  589. 'desc_bprop': [[2, 3, 3, 5]]}),
  590. ('Mul0', {
  591. 'block': P.Mul(),
  592. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  593. 'desc_bprop': [[2, 3, 3, 5]]}),
  594. ('Mul1', {
  595. 'block': P.Mul(),
  596. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  597. 'desc_bprop': [[2, 3, 3, 5]]}),
  598. ('Mul2', {
  599. 'block': P.Mul(),
  600. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  601. 'desc_bprop': [[2, 3, 3, 5]],
  602. 'skip': ['backward']}),
  603. ('Mul3', {
  604. 'block': P.Mul(),
  605. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  606. 'desc_bprop': [[2, 3, 3, 5]],
  607. 'skip': ['backward']}),
  608. ('Mul4', {
  609. 'block': P.Mul(),
  610. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  611. 'desc_bprop': [[2, 3, 3, 5]],
  612. 'skip': ['backward']}),
  613. ('Add0', {
  614. 'block': P.TensorAdd(),
  615. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  616. 'desc_bprop': [[2, 3, 3, 5]]}),
  617. ('Add1', {
  618. 'block': P.TensorAdd(),
  619. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  620. 'desc_bprop': [[2, 3, 3, 5]],
  621. 'skip': ['backward']}),
  622. ('Add2', {
  623. 'block': P.TensorAdd(),
  624. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  625. 'desc_bprop': [[2, 3, 3, 5]],
  626. 'skip': ['backward']}),
  627. ('Add3', {
  628. 'block': P.TensorAdd(),
  629. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  630. 'desc_bprop': [[2, 3, 3, 5]],
  631. 'skip': ['backward']}),
  632. ('Add4', {
  633. 'block': P.TensorAdd(),
  634. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  635. 'desc_bprop': [[2, 3, 3, 5]],
  636. 'skip': ['backward']}),
  637. ('Minimum', {
  638. 'block': P.Minimum(),
  639. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  640. 'desc_bprop': [[2, 3, 3, 5]]}),
  641. ('Pow_0', {
  642. 'block': P.Pow(),
  643. 'desc_const': [2.0],
  644. 'desc_inputs': [[2, 3, 3, 5]],
  645. 'desc_bprop': [[2, 3, 3, 5]]}),
  646. ('Pow_1', {
  647. 'block': P.Pow(),
  648. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  649. 'desc_bprop': [[2, 3, 3, 5]]}),
  650. ('Exp', {
  651. 'block': P.Exp(),
  652. 'desc_inputs': [[2, 3]],
  653. 'desc_bprop': [[2, 3]]}),
  654. ('Expm1', {
  655. 'block': P.Expm1(),
  656. 'desc_inputs': [[2, 3]],
  657. 'desc_bprop': [[2, 3]]}),
  658. ('Erf', {
  659. 'block': P.Erf(),
  660. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  661. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  662. ('Floor', {
  663. 'block': P.Floor(),
  664. 'desc_inputs': [[2, 512, 56, 56]],
  665. 'desc_bprop': [[2, 512, 56, 56]],
  666. 'skip': ['backward']}),
  667. ('Ceil', {
  668. 'block': P.Ceil(),
  669. 'desc_inputs': [[2, 512, 56, 56]],
  670. 'desc_bprop': [[2, 512, 56, 56]],
  671. 'skip': ['backward']}),
  672. ('InplaceAdd', {
  673. 'block': InplaceAddNet(),
  674. 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
  675. Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
  676. 'skip': ['backward']}),
  677. ('InplaceSub', {
  678. 'block': InplaceSubNet(),
  679. 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
  680. Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
  681. 'skip': ['backward']}),
  682. ('ACos', {
  683. 'block': P.ACos(),
  684. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  685. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  686. ('ACosGrad', {
  687. 'block': G.ACosGrad(),
  688. 'desc_inputs': [[2, 3], [2, 3]],
  689. 'skip': ['backward']}),
  690. ('Acosh', {
  691. 'block': P.Acosh(),
  692. 'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
  693. 'desc_bprop': [Tensor(np.array([2., 3.]).astype(np.float32))]}),
  694. ('AcoshGrad', {
  695. 'block': G.AcoshGrad(),
  696. 'desc_inputs': [[2, 3], [2, 3]],
  697. 'skip': ['backward']}),
  698. ('Sin', {
  699. 'block': P.Sin(),
  700. 'desc_inputs': [[2, 3]],
  701. 'desc_bprop': [[2, 3]]}),
  702. ('Asin', {
  703. 'block': P.Asin(),
  704. 'desc_inputs': [[2, 3]],
  705. 'desc_bprop': [[2, 3]]}),
  706. ('Asinh', {
  707. 'block': P.Asinh(),
  708. 'desc_inputs': [[3, 4, 5]],
  709. 'desc_bprop': [[3, 4, 5]]}),
  710. ('Tan', {
  711. 'block': P.Tan(),
  712. 'desc_inputs': [[2, 3]],
  713. 'desc_bprop': [[2, 3]]}),
  714. ('Reciprocal', {
  715. 'block': P.Reciprocal(),
  716. 'desc_inputs': [[2, 3, 3, 5]],
  717. 'desc_bprop': [[2, 3, 3, 5]]}),
  718. ('Minimum_0', {
  719. 'block': P.Minimum(),
  720. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  721. 'desc_bprop': [[2, 3, 3, 5]]}),
  722. ('Maximum', {
  723. 'block': P.Maximum(),
  724. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  725. 'desc_bprop': [[2, 3, 3, 5]]}),
  726. ('Maximum_0', {
  727. 'block': P.Maximum(),
  728. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  729. 'desc_bprop': [[2, 3, 3, 5]]}),
  730. ('MaximumGrad', {
  731. 'block': G.MaximumGrad(),
  732. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  733. 'skip': ['backward']}),
  734. ('MinimumGrad', {
  735. 'block': G.MinimumGrad(),
  736. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  737. 'skip': ['backward']}),
  738. ('StridedSlice_00', {
  739. 'block': P.StridedSlice(shrink_axis_mask=0),
  740. 'desc_const': [(0, 1, 2, 1),
  741. (2, 3, 3, 4),
  742. (1, 1, 1, 2)],
  743. 'desc_inputs': [[2, 3, 3, 5]],
  744. 'desc_bprop': [[2, 2, 1, 3]],
  745. 'skip': ['backward']}),
  746. ('Slice_1', {
  747. 'block': P.Slice(),
  748. 'desc_const': [(0, 1, 2, 1),
  749. (1, 1, 1, 2)],
  750. 'desc_inputs': [[2, 3, 3, 5]],
  751. 'desc_bprop': [[1, 1, 1, 2]]}),
  752. ('StridedSliceGrad', {
  753. 'block': G.StridedSliceGrad(),
  754. 'desc_const': [(64, 1, 1024),
  755. (0, 1, 0),
  756. (64, 2, 1024),
  757. (1, 1, 1)],
  758. 'desc_inputs': [[64, 128, 1024]],
  759. 'skip': ['backward']}),
  760. ('Normal', {
  761. 'block': NormalNet((3, 2, 4), 0),
  762. 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
  763. 'skip': ['backward']}),
  764. ('Laplace', {
  765. 'block': LaplaceNet((3, 2, 4), 0),
  766. 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
  767. 'skip': ['backward']}),
  768. ('Gamma', {
  769. 'block': GammaNet((3, 2, 4), 0),
  770. 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
  771. 'skip': ['backward']}),
  772. ('Poisson', {
  773. 'block': PoissonNet((3, 2, 4), 0),
  774. 'desc_inputs': [Tensor(2.0, mstype.float32)],
  775. 'skip': ['backward']}),
  776. ('Uniform', {
  777. 'block': UniformNet((3, 2, 4), 0),
  778. 'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
  779. 'skip': ['backward']}),
  780. ('RandomChoiceWithMask', {
  781. 'block': P.RandomChoiceWithMask(256),
  782. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  783. 'desc_bprop': [[256, 4], [256, 4]],
  784. 'skip': ['backward']}),
  785. ('LessEqual', {
  786. 'block': P.LessEqual(),
  787. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  788. Tensor(np.random.rand(4).astype(np.float16))],
  789. 'skip': ['backward']}),
  790. ('Less', {
  791. 'block': P.Less(),
  792. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  793. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  794. 'skip': ['backward']}),
  795. ('RealDiv_0', {
  796. 'block': P.RealDiv(),
  797. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  798. 'desc_inputs': [],
  799. 'skip': ['backward']}),
  800. ('RealDiv', {
  801. 'block': P.RealDiv(),
  802. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  803. 'desc_bprop': [[4]]}),
  804. ('RealDiv_1', {
  805. 'block': P.RealDiv(),
  806. 'desc_inputs': [[512, 1024], [512, 1024]],
  807. 'desc_bprop': [[512, 1024]]}),
  808. ('FloorDiv', {
  809. 'block': P.FloorDiv(),
  810. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  811. Tensor(np.random.rand(4).astype(np.float16))],
  812. 'skip': ['backward']}),
  813. ('FloorMod', {
  814. 'block': P.FloorMod(),
  815. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  816. 'desc_bprop': [[2, 3, 4, 5]]}),
  817. ('TruncateDiv', {
  818. 'block': P.TruncateDiv(),
  819. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  820. 'desc_bprop': [[2, 3, 4, 5]]}),
  821. ('TruncateMod', {
  822. 'block': P.TruncateMod(),
  823. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  824. 'desc_bprop': [[2, 3, 4, 5]]}),
  825. ('identity', {
  826. 'block': ops.functional.identity,
  827. 'desc_inputs': [[2, 2]],
  828. 'skip': ['backward']}),
  829. ('MatMul_1', {
  830. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  831. 'desc_inputs': [[1024, 160], [160, 1024]],
  832. 'desc_bprop': [[1024, 1024]]}),
  833. ('MatMul_2', {
  834. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  835. 'desc_inputs': [[160, 1024], [1024, 160]],
  836. 'desc_bprop': [[1024, 1024]]}),
  837. ('Sub', {
  838. 'block': P.Sub(),
  839. 'desc_inputs': [[3], [3]],
  840. 'desc_bprop': [[3]]}),
  841. ('TruncatedNormal', {
  842. 'block': P.TruncatedNormal(),
  843. 'desc_const': [(1, 2, 3)],
  844. 'desc_inputs': [],
  845. 'skip': ['backward'],
  846. 'add_fake_input': True}),
  847. ('Select', {
  848. 'block': P.Select(),
  849. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  850. [2, 3], [2, 3]],
  851. 'desc_bprop': [[2, 3]]}),
  852. ('Rank', {
  853. 'block': P.Rank(),
  854. 'desc_inputs': [[2, 3]],
  855. 'skip': ['backward']}),
  856. ('InvertPermutation', {
  857. 'block': P.InvertPermutation(),
  858. 'desc_const': [(0, 3, 1, 2)],
  859. 'desc_inputs': [],
  860. 'skip': ['backward']}),
  861. ('Xdivy', {
  862. 'block': P.Xdivy(),
  863. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  864. 'desc_bprop': [[2, 3, 4, 5]]}),
  865. ('Xlogy', {
  866. 'block': P.Xlogy(),
  867. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  868. 'desc_bprop': [[2, 3, 4, 5]]}),
  869. ('SquaredDifference', {
  870. 'block': P.SquaredDifference(),
  871. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  872. 'desc_bprop': [[2, 3, 4, 5]]}),
  873. ('Square', {
  874. 'block': P.Square(),
  875. 'desc_inputs': [[4]],
  876. 'desc_bprop': [[4]]}),
  877. ('Rsqrt', {
  878. 'block': P.Rsqrt(),
  879. 'desc_inputs': [[4]],
  880. 'desc_bprop': [[4]]}),
  881. ('Sqrt', {
  882. 'block': P.Sqrt(),
  883. 'desc_inputs': [[4]],
  884. 'desc_bprop': [[4]]}),
  885. ('RealDiv', {
  886. 'block': P.RealDiv(),
  887. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  888. 'desc_bprop': [[2, 3, 4, 5]]}),
  889. ('Div', {
  890. 'block': P.Div(),
  891. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  892. 'desc_bprop': [[2, 3, 4, 5]]}),
  893. ('Equal', {
  894. 'block': P.Equal(),
  895. 'desc_inputs': [[3, 4, 5], [4, 5]],
  896. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  897. ('NotEqual', {
  898. 'block': P.NotEqual(),
  899. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  900. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  901. ('NotEqual_0', {
  902. 'block': P.NotEqual(),
  903. 'desc_inputs': [1, [2, 3, 4, 5]],
  904. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  905. 'skip': ['backward']}),
  906. ('ApproximateEqual', {
  907. 'block': P.ApproximateEqual(),
  908. 'desc_inputs': [[3, 4, 5], [3, 4, 5]],
  909. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  910. ('Greater', {
  911. 'block': P.Greater(),
  912. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  913. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  914. ('GreaterEqual', {
  915. 'block': P.GreaterEqual(),
  916. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  917. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  918. ('LogicalNot', {
  919. 'block': P.LogicalNot(),
  920. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  921. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  922. ('LogicalAnd', {
  923. 'block': P.LogicalAnd(),
  924. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  925. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  926. ('LogicalOr', {
  927. 'block': P.LogicalOr(),
  928. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  929. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  930. ('NpuAllocFloatStatus', {
  931. 'block': P.NPUAllocFloatStatus(),
  932. 'desc_inputs': [],
  933. 'add_fack_input': True,
  934. 'fack_input_type': np.float32,
  935. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  936. 'skip': ['backward']}),
  937. ('NpuGetFloatStatus', {
  938. 'block': P.NPUGetFloatStatus(),
  939. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  940. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  941. 'skip': ['backward']}),
  942. ('NpuClearFloatStatus', {
  943. 'block': P.NPUClearFloatStatus(),
  944. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  945. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  946. 'skip': ['backward']}),
  947. ('CheckValid', {
  948. 'block': P.CheckValid(),
  949. 'desc_inputs': [[20000, 4], [3]],
  950. 'desc_bprop': [[20000]],
  951. 'skip': ['backward']}),
  952. ('NMSWithMask', {
  953. 'block': P.NMSWithMask(0.5),
  954. 'desc_inputs': [[128, 5]],
  955. 'desc_bprop': [[128, 5], [128], [128]],
  956. 'skip': ['backward']}),
  957. ('Abs', {
  958. 'block': P.Abs(),
  959. 'desc_inputs': [[4]],
  960. 'desc_bprop': [[4]]}),
  961. ('CumSum', {
  962. 'block': CumSumNet(),
  963. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
  964. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
  965. [1, 3, 7, 9]]).astype(np.float32))]}),
  966. ('ReduceSum_3', {
  967. 'block': P.ReduceSum(),
  968. 'desc_const': [0],
  969. 'desc_inputs': [[3, 2]],
  970. 'desc_bprop': [[2]]}),
  971. ('ReduceSum_4', {
  972. 'block': P.ReduceSum(keep_dims=True),
  973. 'desc_const': [0],
  974. 'desc_inputs': [[3, 2]],
  975. 'desc_bprop': [[1, 2]]}),
  976. ('ReduceSum_5', {
  977. 'block': P.ReduceSum(keep_dims=True),
  978. 'desc_inputs': [[2, 3, 4]],
  979. 'desc_bprop': [[1, 1, 1]]}),
  980. ('ReduceSum_6', {
  981. 'block': P.ReduceSum(),
  982. 'desc_inputs': [[2, 3, 4]],
  983. 'desc_bprop': [[1]]}),
  984. ('Sum_0', {
  985. 'block': P.ReduceSum(),
  986. 'desc_const': [(1,)],
  987. 'desc_inputs': [[3, 2]],
  988. 'desc_bprop': [[3]]}),
  989. ('Sum_1', {
  990. 'block': P.ReduceSum(keep_dims=True),
  991. 'desc_const': [(1,)],
  992. 'desc_inputs': [[3, 2]],
  993. 'desc_bprop': [[3, 1]]}),
  994. ('Sum_2', {
  995. 'block': P.ReduceSum(),
  996. 'desc_const': [(0, 1)],
  997. 'desc_inputs': [[3, 2]],
  998. 'desc_bprop': [[1]]}),
  999. ('Sum_3', {
  1000. 'block': P.ReduceSum(),
  1001. 'desc_const': [0],
  1002. 'desc_inputs': [[3, 2]],
  1003. 'desc_bprop': [[2]]}),
  1004. ('Sum_4', {
  1005. 'block': P.ReduceSum(keep_dims=True),
  1006. 'desc_const': [0],
  1007. 'desc_inputs': [[3, 2]],
  1008. 'desc_bprop': [[1, 2]]}),
  1009. ('Sum_5', {
  1010. 'block': P.ReduceSum(keep_dims=True),
  1011. 'desc_const': [()],
  1012. 'desc_inputs': [[2, 3, 4]],
  1013. 'desc_bprop': [[1, 1, 1]]}),
  1014. ('Sum_6', {
  1015. 'block': P.ReduceSum(),
  1016. 'desc_const': [()],
  1017. 'desc_inputs': [[2, 3, 4]],
  1018. 'desc_bprop': [[1]]}),
  1019. ('Sign', {
  1020. 'block': P.Sign(),
  1021. 'desc_inputs': [[3]],
  1022. 'desc_bprop': [[3]]}),
  1023. ('Round', {
  1024. 'block': P.Round(),
  1025. 'desc_inputs': [[3]],
  1026. 'desc_bprop': [[3]]}),
  1027. ('Atan2', {
  1028. 'block': P.Atan2(),
  1029. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  1030. Tensor(np.array([1, 1]).astype(np.float32))],
  1031. 'desc_bprop': [[2]]}),
  1032. ('SquareSumAll', {
  1033. 'block': P.SquareSumAll(),
  1034. 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
  1035. Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
  1036. 'desc_bprop': [Tensor(np.array(0.1).astype(np.float32)),
  1037. Tensor(np.array(0.1).astype(np.float32))]}),
  1038. ('Cos', {
  1039. 'block': P.Cos(),
  1040. 'desc_inputs': [[2, 3]],
  1041. 'desc_bprop': [[2, 3]]}),
  1042. ('ReduceAll', {
  1043. 'block': P.ReduceAll(),
  1044. 'desc_const': [1],
  1045. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  1046. 'desc_bprop': []}),
  1047. ('ReduceAny', {
  1048. 'block': P.ReduceAny(),
  1049. 'desc_const': [1],
  1050. 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))],
  1051. 'desc_bprop': []}),
  1052. ('BesselI0e', {
  1053. 'block': P.BesselI0e(),
  1054. 'desc_inputs': [[2, 3]],
  1055. 'desc_bprop': [[2, 3]]}),
  1056. ('BesselI1e', {
  1057. 'block': P.BesselI1e(),
  1058. 'desc_inputs': [[2, 3]],
  1059. 'desc_bprop': [[2, 3]]}),
  1060. ('Atan', {
  1061. 'block': P.Atan(),
  1062. 'desc_inputs': [[2, 3]],
  1063. 'desc_bprop': [[2, 3]]}),
  1064. ('AtanGrad', {
  1065. 'block': G.AtanGrad(),
  1066. 'desc_inputs': [[2, 3], [2, 3]],
  1067. 'skip': ['backward']}),
  1068. ('Atanh', {
  1069. 'block': P.Atanh(),
  1070. 'desc_inputs': [[2, 3]],
  1071. 'desc_bprop': [[2, 3]]}),
  1072. ('Cosh', {
  1073. 'block': P.Cosh(),
  1074. 'desc_inputs': [[3, 4, 5]],
  1075. 'desc_bprop': [[3, 4, 5]]}),
  1076. ('Sinh', {
  1077. 'block': P.Sinh(),
  1078. 'desc_inputs': [[3, 4, 5]],
  1079. 'desc_bprop': [[3, 4, 5]]}),
  1080. ('Inv', {
  1081. 'block': P.Inv(),
  1082. 'desc_inputs': [[21, 9, 12, 5]],
  1083. 'desc_bprop': [[21, 9, 12, 5]]}),
  1084. ('Invert', {
  1085. 'block': P.Invert(),
  1086. 'desc_inputs': [Tensor(np.array([[24, 4, 13, 9], [1, 5, 10, 8]]).astype(np.int16))],
  1087. 'desc_bprop': [],
  1088. 'skip': ['backward']}),
  1089. ('HistogramFixedWidth', {
  1090. 'block': P.HistogramFixedWidth(5),
  1091. 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
  1092. 'desc_bprop': [],
  1093. 'skip': ['backward']}),
  1094. ('Mod', {
  1095. 'block': P.Mod(),
  1096. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  1097. 'desc_bprop': [[2, 3, 4, 5]]}),
  1098. ('IFMR', {
  1099. 'block': P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0),
  1100. search_step=1.0, with_offset=False),
  1101. 'desc_inputs': [[3, 4, 5], Tensor([0.1], mstype.float32), Tensor([0.9], mstype.float32),
  1102. Tensor(np.random.rand(4).astype(np.int32))],
  1103. 'desc_bprop': [],
  1104. 'skip': ['backward']}),
  1105. ]
  1106. test_case_nn_ops = [
  1107. ('BiasAdd', {
  1108. 'block': P.BiasAdd(),
  1109. 'desc_inputs': [[1, 3, 3, 3], [3]],
  1110. 'desc_bprop': [[1, 3, 3, 3]]}),
  1111. ('BiasAddGrad', {
  1112. 'block': G.BiasAddGrad(),
  1113. 'desc_inputs': [[1, 3, 3, 3]],
  1114. 'skip': ['backward']}),
  1115. ('Gelu', {
  1116. 'block': P.Gelu(),
  1117. 'desc_inputs': [[1, 3, 4, 4]],
  1118. 'desc_bprop': [[1, 3, 4, 4]]}),
  1119. ('GeluGrad', {
  1120. 'block': G.GeluGrad(),
  1121. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1122. 'desc_bprop': [[2, 2]],
  1123. 'skip': ['backward']}),
  1124. ('Tanh', {
  1125. 'block': P.Tanh(),
  1126. 'desc_inputs': [[1, 3, 4, 4]],
  1127. 'desc_bprop': [[1, 3, 4, 4]]}),
  1128. ('TanhGrad', {
  1129. 'block': G.TanhGrad(),
  1130. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1131. 'desc_bprop': [[1, 3, 4, 4]],
  1132. 'skip': ['backward']}),
  1133. ('ReLU', {
  1134. 'block': P.ReLU(),
  1135. 'desc_inputs': [[1, 3, 4, 4]],
  1136. 'desc_bprop': [[1, 3, 4, 4]]}),
  1137. ('ReLU6', {
  1138. 'block': P.ReLU6(),
  1139. 'desc_inputs': [[1, 3, 4, 4]],
  1140. 'desc_bprop': [[1, 3, 4, 4]]}),
  1141. ('ReLUV2', {
  1142. 'block': P.ReLUV2(),
  1143. 'desc_inputs': [[1, 3, 4, 4]],
  1144. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  1145. ('ReLUGrad', {
  1146. 'block': G.ReluGrad(),
  1147. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1148. 'skip': ['backward']}),
  1149. ('Softplus', {
  1150. 'block': P.Softplus(),
  1151. 'desc_inputs': [[1, 3, 4, 4]],
  1152. 'desc_bprop': [[1, 3, 4, 4]]}),
  1153. ('SoftplusGrad', {
  1154. 'block': G.SoftplusGrad(),
  1155. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  1156. 'skip': ['backward']}),
  1157. ('Elu', {
  1158. 'block': P.Elu(),
  1159. 'desc_inputs': [[2, 3, 4]],
  1160. 'desc_bprop': [[2, 3, 4]]}),
  1161. ('EluGrad', {
  1162. 'block': G.EluGrad(),
  1163. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  1164. 'desc_bprop': [[2, 3, 4]],
  1165. 'skip': ['backward']}),
  1166. ('Sigmoid', {
  1167. 'block': P.Sigmoid(),
  1168. 'desc_inputs': [[1, 3, 4, 4]],
  1169. 'desc_bprop': [[1, 3, 4, 4]]}),
  1170. ('MaxPool', {
  1171. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1172. 'desc_inputs': [[100, 3, 28, 28]],
  1173. 'desc_bprop': [[100, 3, 14, 14]]}),
  1174. ('MaxPoolGrad', {
  1175. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1176. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  1177. 'desc_bprop': [[3, 4, 6, 6]],
  1178. 'skip': ['backward']}),
  1179. ('AvgPool', {
  1180. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  1181. 'desc_inputs': [[100, 3, 28, 28]],
  1182. 'desc_bprop': [[100, 3, 14, 14]]}),
  1183. ('MaxPoolWithArgmax', {
  1184. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  1185. 'desc_inputs': [[128, 32, 32, 64]],
  1186. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  1187. ('SoftmaxCrossEntropyWithLogits', {
  1188. 'block': P.SoftmaxCrossEntropyWithLogits(),
  1189. 'desc_inputs': [[1, 10], [1, 10]],
  1190. 'desc_bprop': [[1], [1, 10]],
  1191. 'skip': ['backward_exec']}),
  1192. ('Flatten', {
  1193. 'block': P.Flatten(),
  1194. 'desc_inputs': [[128, 32, 32, 64]],
  1195. 'desc_bprop': [[128, 65536]]}),
  1196. ('LogSoftmax', {
  1197. 'block': P.LogSoftmax(),
  1198. 'desc_inputs': [[64, 2]],
  1199. 'desc_bprop': [[64, 2]]}),
  1200. ('LogSoftmaxGrad', {
  1201. 'block': G.LogSoftmaxGrad(),
  1202. 'desc_inputs': [[16, 1234], [16, 1234]],
  1203. 'desc_bprop': [[64, 2]],
  1204. 'skip': ['backward']}),
  1205. ('L2Normalize', {
  1206. 'block': P.L2Normalize(),
  1207. 'desc_inputs': [[2, 2]],
  1208. 'desc_bprop': [[2, 2]]}),
  1209. ('L2NormalizeGrad', {
  1210. 'block': G.L2NormalizeGrad(),
  1211. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1212. 'desc_bprop': [[2, 2]],
  1213. 'skip': ['backward']}),
  1214. ('LayerNorm', {
  1215. 'block': P.LayerNorm(),
  1216. 'desc_inputs': [[2, 16], [16], [16]],
  1217. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  1218. ('LayerNormGrad', {
  1219. 'block': G.LayerNormGrad(),
  1220. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  1221. 'desc_bprop': [[2, 16], [16], [16]],
  1222. 'skip': ['backward']}),
  1223. ('FusedBatchNorm', {
  1224. 'block': P.FusedBatchNorm(),
  1225. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  1226. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  1227. 'skip': []}),
  1228. ('FusedBatchNormGrad', {
  1229. 'block': G.FusedBatchNormGrad(),
  1230. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  1231. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  1232. 'skip': ['backward']}),
  1233. ('BatchNorm', {
  1234. 'block': P.BatchNorm(),
  1235. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1236. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1237. 'skip': []}),
  1238. ('BatchNormGrad', {
  1239. 'block': G.BatchNormGrad(),
  1240. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  1241. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  1242. 'skip': ['backward']}),
  1243. ('TopK', {
  1244. 'block': P.TopK(),
  1245. 'desc_const': [5],
  1246. 'desc_inputs': [[20, 20, 10]],
  1247. 'desc_bprop': [[20, 20, 5]],
  1248. 'skip': ['backward']}),
  1249. ('GatherV2_0', {
  1250. 'block': P.GatherV2(),
  1251. 'desc_const': [0],
  1252. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  1253. 'desc_bprop': [[2, 1, 2]]}),
  1254. ('GatherV2_1', {
  1255. 'block': P.GatherV2(),
  1256. 'desc_const': [2],
  1257. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  1258. 'desc_bprop': [[3, 1, 2]]}),
  1259. ('GatherV2_2', {
  1260. 'block': P.GatherV2(),
  1261. 'desc_const': [0],
  1262. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1263. 'desc_bprop': [[3, 2, 1, 3]]}),
  1264. ('GatherV2_3', {
  1265. 'block': P.GatherV2(),
  1266. 'desc_const': [2],
  1267. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1268. 'desc_bprop': [[3, 1, 3, 2]]}),
  1269. ('GatherV2_4', {
  1270. 'block': P.GatherV2(),
  1271. 'desc_const': [1],
  1272. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  1273. 'desc_bprop': [[32, 1, 1024]]}),
  1274. ('GatherV2_5', {
  1275. 'block': P.GatherV2(),
  1276. 'desc_const': [-1],
  1277. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  1278. 'desc_bprop': [[3, 1, 2]]}),
  1279. ('GatherV2_6', {
  1280. 'block': P.GatherV2(),
  1281. 'desc_const': [0],
  1282. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  1283. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  1284. ('SparseGatherV2_0', {
  1285. 'block': P.SparseGatherV2(),
  1286. 'desc_const': [0],
  1287. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  1288. 'desc_bprop': [[2, 1, 2]]}),
  1289. ('Range', {
  1290. 'block': inner.Range(1.0, 5.0),
  1291. 'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
  1292. 'desc_bprop': [[10]]}),
  1293. ('UnsortedSegmentSum', {
  1294. 'block': P.UnsortedSegmentSum(),
  1295. 'desc_const': [1280],
  1296. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  1297. 'desc_bprop': [[1280, 1024]]}),
  1298. ('UnsortedSegmentSum_1', {
  1299. 'block': P.UnsortedSegmentSum(),
  1300. 'desc_const': [4],
  1301. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  1302. 'desc_bprop': [[4, 1, 3]]}),
  1303. ('UnsortedSegmentMin', {
  1304. 'block': P.UnsortedSegmentMin(),
  1305. 'desc_const': [4],
  1306. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
  1307. 'desc_bprop': [[4, 2, 1, 3]]}),
  1308. ('UnsortedSegmentProd', {
  1309. 'block': P.UnsortedSegmentProd(),
  1310. 'desc_const': [4],
  1311. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([0, 1, 0]).astype(np.int32))],
  1312. 'desc_bprop': [[4, 2, 1, 3]]}),
  1313. ('DropoutGenMask', {
  1314. 'block': P.DropoutGenMask(),
  1315. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  1316. 'desc_inputs': [],
  1317. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  1318. 'skip': ['backward']}),
  1319. ('DropoutDoMask', {
  1320. 'block': P.DropoutDoMask(),
  1321. 'desc_const': [Tensor(0.5)],
  1322. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  1323. 'desc_bprop': [[64, 12, 128, 128]]}),
  1324. ('Dropout', {
  1325. 'block': nn.Dropout(0.5),
  1326. 'desc_inputs': [[64, 12, 128, 128]],
  1327. 'desc_bprop': [[64, 12, 128, 128]]}),
  1328. ('ReduceMean0', {
  1329. 'block': P.ReduceMean(),
  1330. 'desc_const': [(2,)],
  1331. 'desc_inputs': [[3, 2, 2]],
  1332. 'desc_bprop': [[3, 2]]}),
  1333. ('ReduceMean1', {
  1334. 'block': P.ReduceMean(),
  1335. 'desc_const': [2],
  1336. 'desc_inputs': [[3, 2, 2]],
  1337. 'desc_bprop': [[3, 2]]}),
  1338. ('All', {
  1339. 'block': P.ReduceAll(),
  1340. 'desc_const': [(1,)],
  1341. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  1342. 'desc_bprop': [[3]],
  1343. 'skip': ['backward']}),
  1344. ('DescConst', {
  1345. 'block': Tensor(np.array([2], np.float32)),
  1346. 'desc_inputs': [],
  1347. 'desc_bprop': [[1]],
  1348. 'skip': ['backward'],
  1349. 'add_fake_input': True}),
  1350. ('Fill', {
  1351. 'block': P.Fill(),
  1352. 'desc_const': [mstype.float32, (2, 3), 1.0],
  1353. 'desc_inputs': [],
  1354. 'desc_bprop': [[2, 3]],
  1355. 'skip': ['backward'],
  1356. 'add_fake_input': True}),
  1357. ('OnesLike', {
  1358. 'block': P.OnesLike(),
  1359. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  1360. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  1361. }),
  1362. ('ZerosLike', {
  1363. 'block': P.ZerosLike(),
  1364. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  1365. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  1366. }),
  1367. ('Softmax', {
  1368. 'block': P.Softmax(),
  1369. 'desc_inputs': [[5, 5]],
  1370. 'desc_bprop': [[5, 5]]}),
  1371. ('Softsign', {
  1372. 'block': P.Softsign(),
  1373. 'desc_inputs': [[5, 5]],
  1374. 'desc_bprop': [[5, 5]]}),
  1375. ('DepthwiseConv2dNative_1', {
  1376. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  1377. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  1378. 'desc_bprop': [[10, 32, 16, 16]]}),
  1379. ('DepthwiseConv2dNative_2', {
  1380. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  1381. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  1382. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  1383. ('SigmoidCrossEntropyWithLogits', {
  1384. 'block': P.SigmoidCrossEntropyWithLogits(),
  1385. 'desc_inputs': [[128, 10], [128, 10]],
  1386. 'desc_bprop': [[128, 10]]}),
  1387. ('Pad', {
  1388. 'block': P.Pad(((1, 2), (2, 3))),
  1389. 'desc_inputs': [[7, 7]],
  1390. 'desc_bprop': [[10, 12]]}),
  1391. ('BinaryCrossEntropy', {
  1392. 'block': P.BinaryCrossEntropy(),
  1393. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  1394. 'desc_bprop': []}),
  1395. ('SparseApplyAdagrad', {
  1396. 'block': SparseApplyAdagradNet(),
  1397. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1398. 'desc_bprop': [[3, 3], [3, 3]],
  1399. 'skip': ['backward']}),
  1400. ('SparseApplyAdagradV2', {
  1401. 'block': SparseApplyAdagradV2Net(),
  1402. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1403. 'skip': ['backward']}),
  1404. ('SparseApplyFtrl', {
  1405. 'block': SparseApplyFtrlNet(),
  1406. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1407. 'skip': ['backward']}),
  1408. ('SparseApplyFtrlV2', {
  1409. 'block': SparseApplyFtrlV2Net(),
  1410. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1411. 'skip': ['backward']}),
  1412. ('ApplyProximalAdagrad', {
  1413. 'block': ApplyProximalAdagradNet(),
  1414. 'desc_inputs': [[3, 3]],
  1415. 'skip': ['backward']}),
  1416. ('SparseApplyProximalAdagrad', {
  1417. 'block': SparseApplyProximalAdagradNet(),
  1418. 'desc_inputs': [[3, 3], Tensor(np.ones((3,), np.int32))],
  1419. 'skip': ['backward']}),
  1420. ('ApplyAdaMax', {
  1421. 'block': ApplyAdaMaxNet(),
  1422. 'desc_inputs': [[3, 3]],
  1423. 'skip': ['backward']}),
  1424. ('ApplyAdadelta', {
  1425. 'block': ApplyAdadeltaNet(),
  1426. 'desc_inputs': [[3, 3]],
  1427. 'skip': ['backward']}),
  1428. ('ApplyAdagrad', {
  1429. 'block': ApplyAdagradNet(),
  1430. 'desc_inputs': [[3, 3]],
  1431. 'skip': ['backward']}),
  1432. ('ApplyAdagradV2', {
  1433. 'block': ApplyAdagradV2Net(),
  1434. 'desc_inputs': [[3, 3]],
  1435. 'skip': ['backward']}),
  1436. ('ApplyAddSign', {
  1437. 'block': ApplyAddSignNet(),
  1438. 'desc_inputs': [[3, 3]],
  1439. 'skip': ['backward']}),
  1440. ('ApplyPowerSign', {
  1441. 'block': ApplyPowerSignNet(),
  1442. 'desc_inputs': [[3, 3]],
  1443. 'skip': ['backward']}),
  1444. ('ApplyGradientDescent', {
  1445. 'block': ApplyGradientDescentNet(),
  1446. 'desc_inputs': [[3, 3]],
  1447. 'skip': ['backward']}),
  1448. ('ApplyProximalGradientDescent', {
  1449. 'block': ApplyProximalGradientDescentNet(),
  1450. 'desc_inputs': [[3, 3]],
  1451. 'skip': ['backward']}),
  1452. ('Flatten_1', {
  1453. 'block': NetForFlatten(),
  1454. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1455. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1456. 'skip': ['backward']}),
  1457. ('Flatten_2', {
  1458. 'block': NetForFlatten(),
  1459. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  1460. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  1461. 'skip': ['backward']}),
  1462. ('Flatten_3', {
  1463. 'block': NetForFlattenComposed(),
  1464. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  1465. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  1466. 'skip': []}),
  1467. ('ArgmaxNet', {
  1468. 'block': ArgmaxNet(),
  1469. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1470. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1471. 'skip': ['backward']}),
  1472. ('ArgminNet', {
  1473. 'block': ArgminNet(),
  1474. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1475. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  1476. 'skip': ['backward']}),
  1477. ('StridedSliceNet', {
  1478. 'block': StridedSliceNet(),
  1479. 'desc_inputs': [[6, 7, 8, 9, 10]],
  1480. 'skip': ['backward']}),
  1481. ('OneHot', {
  1482. 'block': P.OneHot(),
  1483. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  1484. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  1485. 'desc_bprop': [[1, 3]]}),
  1486. ('ReduceProd_0', {
  1487. 'block': P.ReduceProd(),
  1488. 'desc_const': [0],
  1489. 'desc_inputs': [[3, 2]],
  1490. 'desc_bprop': [[2]]}),
  1491. ('ReduceProd_1', {
  1492. 'block': P.ReduceProd(keep_dims=True),
  1493. 'desc_const': [0],
  1494. 'desc_inputs': [[3, 2]],
  1495. 'desc_bprop': [[1, 2]]}),
  1496. ('CumProd', {
  1497. 'block': P.CumProd(),
  1498. 'desc_const': [0],
  1499. 'desc_inputs': [[3, 2]],
  1500. 'desc_bprop': [[3, 2]]}),
  1501. ('ApplyFtrl', {
  1502. 'block': ApplyFtrlNet(),
  1503. 'desc_inputs': [[3, 3]],
  1504. 'desc_bprop': [3, 3],
  1505. 'skip': ['backward']}),
  1506. ('ApplyRMSProp', {
  1507. 'block': ApplyRMSNet(),
  1508. 'desc_inputs': [[3, 3]],
  1509. 'desc_bprop': [3, 3],
  1510. 'skip': ['backward']}),
  1511. ('ApplyCenteredRMSProp', {
  1512. 'block': P.ApplyCenteredRMSProp(),
  1513. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  1514. 'desc_inputs': [Tensor(1., mstype.float32), Tensor(2., mstype.float32), Tensor(1., mstype.float32),
  1515. Tensor(2., mstype.float32), Tensor(1., mstype.float32)],
  1516. 'desc_bprop': [1],
  1517. 'skip': ['backward']}),
  1518. ('CTCLoss', {
  1519. 'block': P.CTCLoss(),
  1520. 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
  1521. Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
  1522. Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
  1523. Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
  1524. 'desc_bprop': [[4], [6, 4, 6]]}),
  1525. ('CTCGreedyDecoder', {
  1526. 'block': CTCGreedyDecoderNet(),
  1527. 'desc_inputs': [[2, 2, 3], Tensor(np.array([2, 2]).astype(np.int32))],
  1528. 'skip': ['backward']}),
  1529. ('L2Loss_1', {
  1530. 'block': P.L2Loss(),
  1531. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  1532. 'desc_bprop': []}),
  1533. ('L2Loss_2', {
  1534. 'block': P.L2Loss(),
  1535. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  1536. 'desc_bprop': []}),
  1537. ('ResizeBilinear', {
  1538. 'block': P.ResizeBilinear((5, 5)),
  1539. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
  1540. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float32)]}),
  1541. ('ResizeBilinearGrad', {
  1542. 'block': G.ResizeBilinearGrad(),
  1543. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1544. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  1545. 'skip': ['backward']}),
  1546. ('ROIAlign', {
  1547. 'block': P.ROIAlign(7, 7, 0.03125, 2),
  1548. 'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
  1549. 'desc_bprop': [[1024, 256, 7, 7]]}),
  1550. ('ROIAlignGrad', {
  1551. 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
  1552. 'desc_inputs': [[1, 1, 2, 2], [1, 5]],
  1553. 'desc_bprop': [[1, 1, 2, 2]],
  1554. 'skip': ['backward']}),
  1555. ('LARSUpdate', {
  1556. 'block': P.LARSUpdate(1e-05, 0.001, False),
  1557. 'desc_const': [0.0, 0.001],
  1558. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  1559. 'desc_bprop': [3, 3],
  1560. 'skip': ['backward']}),
  1561. ('SGD', {
  1562. 'block': P.SGD(0.0, 0.0, False),
  1563. 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
  1564. 'desc_bprop': [3, 3],
  1565. 'skip': ['backward']}),
  1566. ('BinaryCrossEntropy', {
  1567. 'block': P.BinaryCrossEntropy(),
  1568. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1569. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
  1570. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1571. 'desc_bprop': []}),
  1572. ('BinaryCrossEntropyGrad', {
  1573. 'block': G.BinaryCrossEntropyGrad(),
  1574. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  1575. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
  1576. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  1577. 'desc_bprop': [],
  1578. 'skip': ['backward']}),
  1579. ('DataFormatDimMap', {
  1580. 'block': P.DataFormatDimMap(),
  1581. 'desc_inputs': [Tensor([0, 1, 2, 3], mstype.int32)],
  1582. 'desc_bprop': [],
  1583. 'skip': ['backward']}),
  1584. ('MaxPoolGradGrad', {
  1585. 'block': G.MaxPoolGradGrad(),
  1586. 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1587. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1588. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16)],
  1589. 'desc_bprop': [],
  1590. 'skip': ['backward']}),
  1591. ('MaxPoolGradGradWithArgmax', {
  1592. 'block': G.MaxPoolGradGradWithArgmax(),
  1593. 'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1594. Tensor(np.random.rand(1, 1, 2, 2), mstype.float16),
  1595. Tensor(np.zeros((1, 1, 2, 2)), mstype.uint16)],
  1596. 'desc_bprop': [],
  1597. 'skip': ['backward']}),
  1598. ]
  1599. test_case_array_ops = [
  1600. ('SpaceToDepth', {
  1601. 'block': P.SpaceToDepth(2),
  1602. 'desc_inputs': [[1, 3, 2, 2]],
  1603. 'desc_bprop': [[1, 12, 1, 1]]}),
  1604. ('DepthToSpace', {
  1605. 'block': P.DepthToSpace(2),
  1606. 'desc_inputs': [[1, 12, 1, 1]],
  1607. 'desc_bprop': [[1, 3, 2, 2]]}),
  1608. ('Split', {
  1609. 'block': P.Split(1, 2),
  1610. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  1611. 'skip': ['backward']}),
  1612. ('Argmax', {
  1613. 'block': P.Argmax(),
  1614. 'desc_inputs': [[128, 32, 32, 64]],
  1615. 'desc_bprop': [0],
  1616. 'skip': ['backward']}),
  1617. ('Argmin', {
  1618. 'block': P.Argmin(),
  1619. 'desc_inputs': [[128, 32, 32, 64]],
  1620. 'desc_bprop': [1],
  1621. 'skip': ['backward']}),
  1622. ('ArgMaxWithValue', {
  1623. 'block': P.ArgMaxWithValue(),
  1624. 'desc_inputs': [[128, 32, 32, 64]],
  1625. 'desc_bprop': [[1], [1]],
  1626. 'skip': ['backward']}),
  1627. ('ArgMinWithValue', {
  1628. 'block': P.ArgMinWithValue(),
  1629. 'desc_inputs': [[128, 32, 32, 64]],
  1630. 'desc_bprop': [[1], [1]],
  1631. 'skip': ['backward']}),
  1632. ('Transpose_dim3', {
  1633. 'block': P.Transpose(),
  1634. 'desc_const': [(0, 2, 1)],
  1635. 'desc_inputs': [[1, 2, 3]],
  1636. 'desc_bprop': [[1, 3, 2]]}),
  1637. ('Transpose_dim4', {
  1638. 'block': P.Transpose(),
  1639. 'desc_const': [(0, 1, 2, 3)],
  1640. 'desc_inputs': [[1, 2, 3, 4]],
  1641. 'desc_bprop': [[1, 2, 4, 3]]}),
  1642. ('AddN', {
  1643. 'block': NetForTupleInput(P.AddN()),
  1644. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1645. 'desc_bprop': [[2, 3, 3, 5]]}),
  1646. ('AccumulateNV2', {
  1647. 'block': NetForTupleInput(P.AccumulateNV2()),
  1648. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1649. 'desc_bprop': [[2, 3, 3, 5]]}),
  1650. ('Shape', {
  1651. 'block': P.Shape(),
  1652. 'desc_inputs': [[3, 3, 2, 2]],
  1653. 'skip': ['backward']}),
  1654. ('Reshape', {
  1655. 'block': P.Reshape(),
  1656. 'desc_const': [(64,)],
  1657. 'desc_inputs': [[64, 1]],
  1658. 'desc_bprop': [[64]]}),
  1659. ('Cast', {
  1660. 'block': P.Cast(),
  1661. 'desc_const': [mstype.int32],
  1662. 'desc_inputs': [[2, 3, 4, 5]],
  1663. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  1664. ('ExpandDims', {
  1665. 'block': P.ExpandDims(),
  1666. 'desc_const': [0],
  1667. 'desc_inputs': [[2, 2]],
  1668. 'desc_bprop': [[1, 2, 2]]}),
  1669. ('ExpandDims_1', {
  1670. 'block': P.ExpandDims(),
  1671. 'desc_const': [-1],
  1672. 'desc_inputs': [[2, 2]],
  1673. 'desc_bprop': [[2, 2, 1]]}),
  1674. ('Squeeze', {
  1675. 'block': P.Squeeze(2),
  1676. 'desc_inputs': [[3, 2, 1]],
  1677. 'desc_bprop': [[3, 2]]}),
  1678. ('Squeeze_0', {
  1679. 'block': P.Squeeze(),
  1680. 'desc_inputs': [[3, 1, 2, 1]],
  1681. 'desc_bprop': [[3, 2]]}),
  1682. ('Squeeze_1', {
  1683. 'block': P.Squeeze(),
  1684. 'desc_inputs': [[1, 1, 1, 1]],
  1685. 'desc_bprop': [1.0],
  1686. 'skip': ['backward']}),
  1687. ('Squeeze_2', {
  1688. 'block': P.Squeeze((2, 3)),
  1689. 'desc_inputs': [[3, 2, 1, 1]],
  1690. 'desc_bprop': [[3, 2]]}),
  1691. ('Size', {
  1692. 'block': P.Size(),
  1693. 'desc_inputs': [[2, 3, 5]],
  1694. 'skip': ['backward']}),
  1695. ('Tile_0', {
  1696. 'block': P.Tile(),
  1697. 'desc_const': [(1, 2)],
  1698. 'desc_inputs': [[64, 1]],
  1699. 'desc_bprop': [[64, 2]]}),
  1700. ('Tile_1', {
  1701. 'block': P.Tile(),
  1702. 'desc_const': [(1, 1)],
  1703. 'desc_inputs': [[64, 1]],
  1704. 'desc_bprop': [[64, 1]]}),
  1705. ('Tile_2', {
  1706. 'block': P.Tile(),
  1707. 'desc_const': [(2, 1, 1, 2)],
  1708. 'desc_inputs': [[2, 2, 2]],
  1709. 'desc_bprop': [[2, 2, 2, 4]]}),
  1710. ('ReverseV2', {
  1711. 'block': P.ReverseV2(axis=[1]),
  1712. 'desc_inputs': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))],
  1713. 'desc_bprop': [(Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).astype(np.float32)))]}),
  1714. ('Rint', {
  1715. 'block': P.Rint(),
  1716. 'desc_inputs': [(Tensor(np.array([-1.6, -0.1, 1.5, 2.0]).astype(np.float32)))],
  1717. 'skip': ['backward']}),
  1718. ('ConcatV2_0', {
  1719. 'block': P.Concat(),
  1720. 'desc_inputs': [
  1721. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  1722. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  1723. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  1724. ('ConcatV2_1', {
  1725. 'block': P.Concat(axis=2),
  1726. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  1727. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  1728. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  1729. ('ConcatV2_2', {
  1730. 'block': NetForConcat(),
  1731. 'desc_inputs': [[2, 2]],
  1732. 'desc_bprop': [[4, 2]]}),
  1733. ('ConcatV2_3', {
  1734. 'block': NetForConcat1(),
  1735. 'desc_inputs': [[2, 2], [2, 2]],
  1736. 'desc_bprop': [[4, 2]]}),
  1737. ('ConcatV2_4', {
  1738. 'block': P.Concat(axis=0),
  1739. 'desc_inputs': [
  1740. (Tensor(np.ones((3, 2, 3), np.float32)),
  1741. Tensor(np.ones((5, 2, 3), np.float32)),
  1742. Tensor(np.ones((6, 2, 3), np.float32)))],
  1743. 'desc_bprop': [[14, 2, 3]]}),
  1744. ('ConcatV2_5', {
  1745. 'block': P.Concat(axis=-1),
  1746. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  1747. Tensor(np.array([1], np.float32)),
  1748. Tensor(np.array([1], np.float32)))],
  1749. 'desc_bprop': [[3, ]]}),
  1750. ('Pack_0', {
  1751. 'block': NetForPackInput(P.Pack()),
  1752. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1753. 'desc_bprop': [[3, 2, 2]],
  1754. }),
  1755. ('Pack_1', {
  1756. 'block': NetForPackInput(P.Pack(axis=-2)),
  1757. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  1758. 'desc_bprop': [[3, 2, 3, 3]],
  1759. }),
  1760. ('Pack_2', {
  1761. 'block': NetForPackInput(P.Pack()),
  1762. 'desc_inputs': [[128, 128], [128, 128]],
  1763. 'desc_bprop': [[2, 128, 128]],
  1764. }),
  1765. ('Pack_3', {
  1766. 'block': NetForPackInput(P.Pack()),
  1767. 'desc_inputs': [[2, 2]],
  1768. 'desc_bprop': [[1, 2, 2]]}),
  1769. ('Unpack_0', {
  1770. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1771. 'desc_inputs': [[2, 4]],
  1772. 'desc_bprop': [[4], [4]],
  1773. }),
  1774. ('Unpack_1', {
  1775. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1776. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1777. 'desc_bprop': [[1], [1], [1]],
  1778. }),
  1779. ('Diag_1', {
  1780. 'block': P.Diag(),
  1781. 'desc_inputs': [[4]],
  1782. 'desc_bprop': [[4, 4]],
  1783. }),
  1784. ('Diag_2', {
  1785. 'block': P.Diag(),
  1786. 'desc_inputs': [[4, 4]],
  1787. 'desc_bprop': [[4, 4, 4, 4]],
  1788. }),
  1789. ('DiagPart_1', {
  1790. 'block': P.DiagPart(),
  1791. 'desc_inputs': [[4, 4]],
  1792. 'desc_bprop': [[4]],
  1793. }),
  1794. ('DiagPart_2', {
  1795. 'block': P.DiagPart(),
  1796. 'desc_inputs': [[4, 4, 4, 4]],
  1797. 'desc_bprop': [[4, 4]],
  1798. }),
  1799. ('SpaceToBatch_1', {
  1800. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1801. 'desc_inputs': [[1, 3, 2, 2]],
  1802. 'desc_bprop': [[4, 3, 1, 1]],
  1803. }),
  1804. ('SpaceToBatch_2', {
  1805. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1806. 'desc_inputs': [[1, 3, 2, 2]],
  1807. 'desc_bprop': [[4, 3, 2, 3]],
  1808. }),
  1809. ('BatchToSpace_1', {
  1810. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1811. 'desc_inputs': [[4, 3, 1, 1]],
  1812. 'desc_bprop': [[1, 3, 2, 2]],
  1813. }),
  1814. ('BatchToSpace_2', {
  1815. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1816. 'desc_inputs': [[4, 3, 1, 1]],
  1817. 'desc_bprop': [[1, 3, 2, 1]],
  1818. }),
  1819. ('UnsortedSegmentMin_1', {
  1820. 'block': P.UnsortedSegmentMin(),
  1821. 'desc_const': [2],
  1822. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)),
  1823. Tensor(np.array([0, 1, 1]).astype(np.int32))],
  1824. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
  1825. ('BroadcastTo', {
  1826. 'block': P.BroadcastTo((2, 3)),
  1827. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
  1828. 'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
  1829. ('InTopK', {
  1830. 'block': P.InTopK(2),
  1831. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [2, 3, 6], [4, 2, 1]]).astype(np.float32)),
  1832. Tensor(np.array([2, 1, 2]).astype(np.int32))],
  1833. 'skip': ['backward'],
  1834. }),
  1835. ('InplaceUpdate', {
  1836. 'block': P.InplaceUpdate((0, 2)),
  1837. 'desc_inputs': [Tensor(np.arange(24).reshape(3, 4, 2).astype(np.float32)),
  1838. Tensor(np.arange(16).reshape(2, 4, 2).astype(np.float32))],
  1839. 'skip': ['backward'],
  1840. }),
  1841. ('ReverseSequence', {
  1842. 'block': P.ReverseSequence(1, 0),
  1843. 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)),
  1844. Tensor(np.array([1, 2, 3]).astype(np.int32))],
  1845. 'desc_bprop': [[3, 3]]}),
  1846. ('EditDistance', {
  1847. 'block': EditDistance(Tensor(np.array([1, 1, 2]).astype(np.int64)),
  1848. Tensor(np.array([2, 2, 2]).astype(np.int64))),
  1849. 'desc_inputs': [Tensor(np.array([[0, 0, 0], [1, 0, 1], [1, 1, 1]]).astype(np.int64)),
  1850. Tensor(np.array([1, 2, 3]).astype(np.float32)),
  1851. Tensor(np.array([[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1]]).astype(np.int64)),
  1852. Tensor(np.array([1, 3, 2, 1]).astype(np.float32))],
  1853. 'skip': ['backward'],
  1854. }),
  1855. ('LinSpace', {
  1856. 'block': inner.LinSpace(),
  1857. 'desc_inputs': [Tensor([5, 5.5], mstype.float32),
  1858. Tensor(1, mstype.float32),
  1859. Tensor(10, mstype.float32),
  1860. Tensor(5, mstype.int32)],
  1861. 'skip': ['backward'],
  1862. }),
  1863. ('MatrixDiag', {
  1864. 'block': inner.MatrixDiag(),
  1865. 'desc_inputs': [Tensor(np.array([1, -1]), mstype.float32),
  1866. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1867. 'skip': ['backward'],
  1868. }),
  1869. ('MatrixDiagPart', {
  1870. 'block': inner.MatrixDiagPart(),
  1871. 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
  1872. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1873. 'skip': ['backward'],
  1874. }),
  1875. ('MatrixSetDiag', {
  1876. 'block': inner.MatrixSetDiag(),
  1877. 'desc_inputs': [Tensor(np.arange(12).reshape(3, 2, 2), mstype.float32),
  1878. Tensor(np.arange(6).reshape(3, 2), mstype.float32),
  1879. Tensor(np.arange(-12, 0).reshape(3, 2, 2), mstype.float32)],
  1880. 'skip': ['backward'],
  1881. }),
  1882. ('TransShape', {
  1883. 'block': P.TransShape(),
  1884. 'desc_const': [(1, 12, 24, 24)],
  1885. 'desc_inputs': [[1, 3, 24, 24]],
  1886. 'desc_bprop': [[1, 12, 24, 24]],
  1887. }),
  1888. ('ParallelConcat', {
  1889. 'block': ParallelConcatNet(),
  1890. 'desc_inputs': [Tensor([[1, 2]], mstype.float32),
  1891. Tensor([[5, 6]], mstype.float32)],
  1892. 'skip': ['backward'],
  1893. }),
  1894. ]
  1895. test_case_other_ops = [
  1896. ('ScalarLog', {
  1897. 'block': F.scalar_log,
  1898. 'desc_const': [0.0],
  1899. 'desc_inputs': [],
  1900. 'desc_bprop': [1],
  1901. 'skip': ['backward']}),
  1902. ('BoundingBoxEncode', {
  1903. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1904. 'desc_inputs': [[256, 4], [256, 4]],
  1905. 'desc_bprop': [[256, 4]],
  1906. 'skip': ['backward']}),
  1907. ('BoundingBoxDecode', {
  1908. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1909. 'desc_inputs': [[256, 4], [256, 4]],
  1910. 'desc_bprop': [[256, 4]],
  1911. 'skip': ['backward']}),
  1912. ('GatherNd', {
  1913. 'block': P.GatherNd(),
  1914. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1915. Tensor(np.ones((2, 4), np.int32))),
  1916. 'desc_bprop': [[2]]}),
  1917. ('ScatterNd', {
  1918. 'block': P.ScatterNd(),
  1919. 'desc_const': [(3, 3)],
  1920. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1921. Tensor(np.ones((2,), np.int32))),
  1922. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1923. ('TensorScatterUpdate', {
  1924. 'block': P.TensorScatterUpdate(),
  1925. 'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)), mstype.float32),
  1926. Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  1927. Tensor(np.ones([2, 5], np.float32) * 99)),
  1928. 'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
  1929. ('ScatterMaxUseLocking', {
  1930. 'block': ScatterMax(use_locking=True),
  1931. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1932. Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
  1933. 'skip': ['backward']}),
  1934. ('ScatterMax1d', {
  1935. 'block': ScatterMax(),
  1936. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1937. Tensor(np.array([[5.0, 5.0, 5.0], [4.0, 4.0, 4.0]], np.float32))),
  1938. 'skip': ['backward']}),
  1939. ('ScatterMaxF32', {
  1940. 'block': ScatterMax(),
  1941. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1942. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1943. 'skip': ['backward']}),
  1944. ('ScatterMaxF16', {
  1945. 'block': ScatterMax(np.float16),
  1946. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1947. Tensor(np.ones([2, 2, 3], np.float16) * 99)),
  1948. 'skip': ['backward']}),
  1949. ('ScatterMaxI32', {
  1950. 'block': ScatterMax(np.int32),
  1951. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1952. Tensor(np.ones([2, 2, 3], np.int32) * 99)),
  1953. 'skip': ['backward']}),
  1954. ('ScatterMinUseLocking', {
  1955. 'block': ScatterMin(use_locking=True),
  1956. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1957. Tensor(np.ones([2, 3], np.float32))),
  1958. 'skip': ['backward']}),
  1959. ('ScatterMin1d', {
  1960. 'block': ScatterMin(),
  1961. 'desc_inputs': (Tensor(np.array([1, 0], np.int32)),
  1962. Tensor(np.ones([2, 3], np.float32))),
  1963. 'skip': ['backward']}),
  1964. ('ScatterMinF32', {
  1965. 'block': ScatterMin(),
  1966. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1967. Tensor(np.ones([2, 2, 3], np.float32))),
  1968. 'skip': ['backward']}),
  1969. ('ScatterMinF16', {
  1970. 'block': ScatterMin(np.float16),
  1971. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1972. Tensor(np.ones([2, 2, 3], np.float16))),
  1973. 'skip': ['backward']}),
  1974. ('ScatterMinI32', {
  1975. 'block': ScatterMin(np.int32),
  1976. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1977. Tensor(np.ones([2, 2, 3], np.int32))),
  1978. 'skip': ['backward']}),
  1979. ('ScatterUpdate', {
  1980. 'block': ScatterUpdate((6,)),
  1981. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  1982. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  1983. 'skip': ['backward']}),
  1984. ('ScatterAddUseLocking', {
  1985. 'block': ScatterAdd((6,), use_locking=True),
  1986. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  1987. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  1988. 'skip': ['backward']}),
  1989. ('ScatterNonAliasingAdd_1d', {
  1990. 'block': ScatterNonAliasingAdd((8,)),
  1991. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  1992. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  1993. 'skip': ['backward']}),
  1994. ('ScatterNdAdd', {
  1995. 'block': ScatterNdAdd((8,)),
  1996. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  1997. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  1998. 'skip': ['backward']}),
  1999. ('ScatterNdSub', {
  2000. 'block': ScatterNdAdd((8,)),
  2001. 'desc_inputs': (Tensor(np.array([[2], [3], [4], [5]], np.int32)),
  2002. Tensor(np.array([2.0, 3.0, 4.0, 8.0], np.float32))),
  2003. 'skip': ['backward']}),
  2004. ('ScatterAdd', {
  2005. 'block': ScatterAdd((6,)),
  2006. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2007. Tensor(np.array([2.0, 3.0, 4.0], np.float32))),
  2008. 'skip': ['backward']}),
  2009. ('ScatterAddScalar', {
  2010. 'block': ScatterAdd((6,)),
  2011. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2012. Tensor(np.array([2.0], np.float32))),
  2013. 'skip': ['backward']}),
  2014. ('ScatterAdd2d', {
  2015. 'block': ScatterAdd((3, 4)),
  2016. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2017. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2018. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2019. 'skip': ['backward']}),
  2020. ('ScatterAddF16', {
  2021. 'block': ScatterAdd((6,), np.float16),
  2022. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2023. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2024. 'skip': ['backward']}),
  2025. ('ScatterAddI8', {
  2026. 'block': ScatterAdd((6,), np.int8),
  2027. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2028. Tensor(np.array([2, 3, 4], np.int8))),
  2029. 'skip': ['backward']}),
  2030. ('ScatterAddI32', {
  2031. 'block': ScatterAdd((6,), np.int32),
  2032. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2033. Tensor(np.array([2, 3, 4], np.int32))),
  2034. 'skip': ['backward']}),
  2035. ('ScatterAddU8', {
  2036. 'block': ScatterAdd((6,), np.uint8),
  2037. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2038. Tensor(np.array([2, 3, 4], np.uint8))),
  2039. 'skip': ['backward']}),
  2040. ('ScatterMulUseLocking', {
  2041. 'block': ScatterMul((6,), use_locking=True),
  2042. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2043. Tensor(np.array([2.0], np.float32))),
  2044. 'skip': ['backward']}),
  2045. ('ScatterMulScalar', {
  2046. 'block': ScatterMul((6,)),
  2047. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2048. Tensor(np.array([2.0], np.float32))),
  2049. 'skip': ['backward']}),
  2050. ('ScatterMul2d', {
  2051. 'block': ScatterMul((3, 4)),
  2052. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2053. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2054. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2055. 'skip': ['backward']}),
  2056. ('ScatterMulF16', {
  2057. 'block': ScatterMul((6,), np.float16),
  2058. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2059. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2060. 'skip': ['backward']}),
  2061. ('ScatterMulI8', {
  2062. 'block': ScatterMul((6,), np.int8),
  2063. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2064. Tensor(np.array([2, 3, 4], np.int8))),
  2065. 'skip': ['backward']}),
  2066. ('ScatterMulI32', {
  2067. 'block': ScatterMul((6,), np.int32),
  2068. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2069. Tensor(np.array([2, 3, 4], np.int32))),
  2070. 'skip': ['backward']}),
  2071. ('ScatterMulU8', {
  2072. 'block': ScatterMul((6,), np.uint8),
  2073. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2074. Tensor(np.array([2, 3, 4], np.uint8))),
  2075. 'skip': ['backward']}),
  2076. ('ScatterDivUseLocking', {
  2077. 'block': ScatterDiv((6,), use_locking=True),
  2078. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2079. Tensor(np.array([2.0], np.float32))),
  2080. 'skip': ['backward']}),
  2081. ('ScatterDivScalar', {
  2082. 'block': ScatterDiv((6,)),
  2083. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2084. Tensor(np.array([2.0], np.float32))),
  2085. 'skip': ['backward']}),
  2086. ('ScatterDiv2d', {
  2087. 'block': ScatterDiv((3, 4)),
  2088. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2089. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2090. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2091. 'skip': ['backward']}),
  2092. ('ScatterDivF16', {
  2093. 'block': ScatterDiv((6,), np.float16),
  2094. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2095. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2096. 'skip': ['backward']}),
  2097. ('ScatterDivI8', {
  2098. 'block': ScatterDiv((6,), np.int8),
  2099. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2100. Tensor(np.array([2, 3, 4], np.int8))),
  2101. 'skip': ['backward']}),
  2102. ('ScatterDivU8', {
  2103. 'block': ScatterDiv((6,), np.uint8),
  2104. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2105. Tensor(np.array([2, 3, 4], np.uint8))),
  2106. 'skip': ['backward']}),
  2107. ('ScatterSubUseLocking', {
  2108. 'block': ScatterSub((6,), use_locking=True),
  2109. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2110. Tensor(np.array([2.0], np.float32))),
  2111. 'skip': ['backward']}),
  2112. ('ScatterSubScalar', {
  2113. 'block': ScatterSub((6,)),
  2114. 'desc_inputs': (Tensor(np.array([2], np.int32)),
  2115. Tensor(np.array([2.0], np.float32))),
  2116. 'skip': ['backward']}),
  2117. ('ScatterSub2d', {
  2118. 'block': ScatterSub((3, 4)),
  2119. 'desc_inputs': (Tensor(np.array([[0, 1], [1, 2]], np.int32)),
  2120. Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2]],
  2121. [[3, 3, 3, 3], [4, 4, 4, 4]]], np.float32))),
  2122. 'skip': ['backward']}),
  2123. ('ScatterSubF16', {
  2124. 'block': ScatterSub((6,), np.float16),
  2125. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2126. Tensor(np.array([2.0, 3.0, 4.0], np.float16))),
  2127. 'skip': ['backward']}),
  2128. ('ScatterSubI32', {
  2129. 'block': ScatterSub((6,), np.int32),
  2130. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2131. Tensor(np.array([2, 3, 4], np.int32))),
  2132. 'skip': ['backward']}),
  2133. ('ScatterSubI8', {
  2134. 'block': ScatterSub((6,), np.int8),
  2135. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2136. Tensor(np.array([2, 3, 4], np.int8))),
  2137. 'skip': ['backward']}),
  2138. ('ScatterSubU8', {
  2139. 'block': ScatterSub((6,), np.uint8),
  2140. 'desc_inputs': (Tensor(np.array([2, 0, 5], np.int32)),
  2141. Tensor(np.array([1, 1, 0], np.uint8))),
  2142. 'skip': ['backward']}),
  2143. ('SmoothL1Loss', {
  2144. 'block': P.SmoothL1Loss(),
  2145. 'desc_inputs': [[256, 4], [256, 4]],
  2146. 'desc_bprop': [[256, 4]]}),
  2147. ('IOU', {
  2148. 'block': P.IOU(),
  2149. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  2150. 'desc_bprop': [convert([128, 256], np.float16)]}),
  2151. ('Summary', {
  2152. 'block': SummaryNet(),
  2153. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  2154. Tensor(np.array([1.2]).astype(np.float32))],
  2155. 'skip': ['backward']}),
  2156. ('HistogramSummary', {
  2157. 'block': HistogramSummaryNet(),
  2158. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  2159. Tensor(np.array([1.2]).astype(np.float32))],
  2160. 'skip': ['backward']}),
  2161. ('PopulationCount', {
  2162. 'block': P.PopulationCount(),
  2163. 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.int16))],
  2164. 'skip': ['backward']}),
  2165. ('BasicLSTMCellNet', {
  2166. 'block': BasicLSTMCellNet(),
  2167. 'desc_inputs': [Tensor(np.random.rand(1, 32).astype(np.float16)),
  2168. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2169. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2170. Tensor(np.random.rand(96, 256).astype(np.float16)),
  2171. Tensor(np.random.rand(256, ).astype(np.float16))],
  2172. 'desc_bprop': [Tensor(np.random.rand(1, 64).astype(np.float16)),
  2173. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2174. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2175. Tensor(np.random.rand(1, 64).astype(np.float16)),
  2176. Tensor(np.random.rand(1, 64).astype(np.float16))]}),
  2177. ]
  2178. test_case_quant_ops = [
  2179. ('Quant_1', {
  2180. 'block': inner.Quant(0.5, 0.0, False, "Round"),
  2181. 'desc_inputs': [Tensor(np.random.rand(1, 2, 4, 4), mstype.float32)],
  2182. 'skip': ['backward']}),
  2183. ('Quant_2', {
  2184. 'block': inner.Quant(80.0, 10.0, True, "Round"),
  2185. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2186. 'skip': ['backward']}),
  2187. ('Quant_3', {
  2188. 'block': inner.Quant(80.0, 0.0, False, "Floor"),
  2189. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2190. 'skip': ['backward']}),
  2191. ('Quant_4', {
  2192. 'block': inner.Quant(80.0, 0.0, False, "Ceil"),
  2193. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2194. 'skip': ['backward']}),
  2195. ('Quant_5', {
  2196. 'block': inner.Quant(80.0, 0.0, False, "Trunc"),
  2197. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2198. 'skip': ['backward']}),
  2199. ('Quant_6', {
  2200. 'block': inner.Quant(-80.0, 10.0, False, "Round"),
  2201. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2202. 'skip': ['backward']}),
  2203. ('Quant_7', {
  2204. 'block': inner.Quant(80.0, -10.0, False, "Round"),
  2205. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)],
  2206. 'skip': ['backward']}),
  2207. ('Quant_8', {
  2208. 'block': inner.Quant(80.0, 10.0, False, "Round"),
  2209. 'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)],
  2210. 'skip': ['backward']}),
  2211. ]
  2212. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops, test_case_quant_ops]
  2213. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  2214. # use -k to select certain testcast
  2215. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  2216. test_exec_case = test_case
  2217. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or 'backward' not in x[1]['skip'], test_case)
  2218. @non_graph_engine
  2219. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  2220. def test_exec():
  2221. context.set_context(mode=context.GRAPH_MODE)
  2222. return test_exec_case
  2223. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  2224. def test_backward_exec():
  2225. context.set_context(mode=context.GRAPH_MODE)
  2226. return test_backward_exec_case
  2227. raise_set = [
  2228. ('Cast_Error', {
  2229. 'block': (P.Cast(), {'exception': TypeError}),
  2230. 'desc_const': [mstype.int32],
  2231. 'desc_inputs': ['wrong input'],
  2232. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  2233. ('Maximum_Error', {
  2234. 'block': (P.Maximum(), {'exception': TypeError}),
  2235. 'desc_const': [(1, 2, 3)],
  2236. 'desc_inputs': [[2, 3, 3, 5]],
  2237. 'desc_bprop': [[2, 3, 3, 5]]}),
  2238. ('Shape_error', {
  2239. 'block': (P.Shape(), {'exception': TypeError}),
  2240. 'desc_inputs': [(64, 1)],
  2241. 'desc_bprop': [[64]]}),
  2242. ('Flatten_Error', {
  2243. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  2244. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  2245. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  2246. ('ScatterNdUpdate', {
  2247. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  2248. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  2249. Tensor(np.ones((2, 2), np.float32)),
  2250. Tensor(np.ones((2,), np.float32))),
  2251. 'desc_bprop': [[2, 3]]}),
  2252. ('PReLU', {
  2253. 'block': (P.PReLU(), {'exception': ValueError}),
  2254. 'desc_inputs': [[2], [1]],
  2255. 'desc_bprop': [[1]]}),
  2256. ('SSIM', {
  2257. 'block': (nn.SSIM(), {'exception': ValueError}),
  2258. 'desc_inputs': [Tensor(np.ones((1, 3, 8, 8)), mstype.float32),
  2259. Tensor(np.ones((1, 3, 8, 8)), mstype.float32)]})
  2260. ]
  2261. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  2262. def test_check_exception():
  2263. return raise_set