You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_loss.py 2.4 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test loss """
  16. import numpy as np
  17. import pytest
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.api import _executor
  21. from ..ut_filter import non_graph_engine
  22. import mindspore
  23. def test_L1Loss():
  24. loss = nn.L1Loss()
  25. input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
  26. target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
  27. loss(input_data, target_data)
  28. def test_MSELoss():
  29. loss = nn.MSELoss()
  30. input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32))
  31. target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32))
  32. loss(input_data, target_data)
  33. @non_graph_engine
  34. def test_SoftmaxCrossEntropyWithLogits():
  35. """ test_SoftmaxCrossEntropyWithLogits """
  36. loss = nn.SoftmaxCrossEntropyWithLogits()
  37. logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
  38. labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
  39. loss.construct(logits, labels)
  40. def test_SoftmaxCrossEntropyWithLogits_reduce():
  41. """ test_SoftmaxCrossEntropyWithLogits """
  42. loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean")
  43. logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
  44. labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
  45. loss(logits, labels)
  46. def test_SoftmaxCrossEntropyExpand():
  47. from mindspore import context
  48. context.set_context(mode=context.GRAPH_MODE)
  49. loss = nn.SoftmaxCrossEntropyExpand()
  50. logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
  51. labels = Tensor(np.random.randint(0, 9, [10,]).astype(np.float32))
  52. _executor.compile(loss, logits, labels)

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.