You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 5.2 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.ops import operations as P
  20. @pytest.mark.level0
  21. @pytest.mark.platform_x86_gpu_training
  22. @pytest.mark.env_onecard
  23. def test_nobroadcast():
  24. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  25. x1_np = np.random.rand(10, 20).astype(np.float32)
  26. x2_np = np.random.rand(10, 20).astype(np.float32)
  27. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  28. output_np = np.minimum(x1_np, x2_np)
  29. assert np.allclose(output_ms.asnumpy(), output_np)
  30. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  31. output_np = np.maximum(x1_np, x2_np)
  32. assert np.allclose(output_ms.asnumpy(), output_np)
  33. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  34. output_np = x1_np > x2_np
  35. assert np.allclose(output_ms.asnumpy(), output_np)
  36. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  37. output_np = x1_np < x2_np
  38. assert np.allclose(output_ms.asnumpy(), output_np)
  39. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  40. output_np = np.power(x1_np, x2_np)
  41. assert np.allclose(output_ms.asnumpy(), output_np)
  42. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  43. output_np = x1_np / x2_np
  44. assert np.allclose(output_ms.asnumpy(), output_np)
  45. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  46. output_np = x1_np * x2_np
  47. assert np.allclose(output_ms.asnumpy(), output_np)
  48. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  49. output_np = x1_np - x2_np
  50. assert np.allclose(output_ms.asnumpy(), output_np)
  51. @pytest.mark.level0
  52. @pytest.mark.platform_x86_gpu_training
  53. @pytest.mark.env_onecard
  54. def test_broadcast():
  55. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  56. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  57. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  58. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  59. output_np = np.minimum(x1_np, x2_np)
  60. assert np.allclose(output_ms.asnumpy(), output_np)
  61. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  62. output_np = np.maximum(x1_np, x2_np)
  63. assert np.allclose(output_ms.asnumpy(), output_np)
  64. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  65. output_np = x1_np > x2_np
  66. assert np.allclose(output_ms.asnumpy(), output_np)
  67. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  68. output_np = x1_np < x2_np
  69. assert np.allclose(output_ms.asnumpy(), output_np)
  70. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  71. output_np = np.power(x1_np, x2_np)
  72. assert np.allclose(output_ms.asnumpy(), output_np)
  73. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  74. output_np = x1_np / x2_np
  75. assert np.allclose(output_ms.asnumpy(), output_np)
  76. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  77. output_np = x1_np * x2_np
  78. assert np.allclose(output_ms.asnumpy(), output_np)
  79. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  80. output_np = x1_np - x2_np
  81. assert np.allclose(output_ms.asnumpy(), output_np)
  82. @pytest.mark.level0
  83. @pytest.mark.platform_x86_gpu_training
  84. @pytest.mark.env_onecard
  85. def test_broadcast_diff_dims():
  86. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  87. x1_np = np.random.rand(2).astype(np.float32)
  88. x2_np = np.random.rand(2, 1).astype(np.float32)
  89. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  90. output_np = np.minimum(x1_np, x2_np)
  91. assert np.allclose(output_ms.asnumpy(), output_np)
  92. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  93. output_np = np.maximum(x1_np, x2_np)
  94. assert np.allclose(output_ms.asnumpy(), output_np)
  95. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  96. output_np = x1_np > x2_np
  97. assert np.allclose(output_ms.asnumpy(), output_np)
  98. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  99. output_np = x1_np < x2_np
  100. assert np.allclose(output_ms.asnumpy(), output_np)
  101. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  102. output_np = np.power(x1_np, x2_np)
  103. assert np.allclose(output_ms.asnumpy(), output_np)
  104. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  105. output_np = x1_np / x2_np
  106. assert np.allclose(output_ms.asnumpy(), output_np)
  107. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  108. output_np = x1_np * x2_np
  109. assert np.allclose(output_ms.asnumpy(), output_np)
  110. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  111. output_np = x1_np - x2_np
  112. assert np.allclose(output_ms.asnumpy(), output_np)