|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the License);
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # httpwww.apache.orglicensesLICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an AS IS BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Defined callback for DeepSpeech.
- """
- import time
- from mindspore.train.callback import Callback
- from mindspore import Tensor
- import numpy as np
-
-
- class TimeMonitor(Callback):
- """
- Time monitor for calculating cost of each epoch.
- Args
- data_size (int) step size of an epoch.
- """
-
- def __init__(self, data_size):
- super(TimeMonitor, self).__init__()
- self.data_size = data_size
-
- def epoch_begin(self, run_context):
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / self.data_size
- print("epoch time: {0}, per step time: {1}".format(epoch_mseconds, per_step_mseconds), flush=True)
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- step_mseconds = (time.time() - self.step_time) * 1000
- print(f"step time {step_mseconds}", flush=True)
-
-
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
- """
-
- def __init__(self, lr_init=None):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
-
- def epoch_begin(self, run_context):
- self.losses = []
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
-
- epoch_mseconds = (time.time() - self.epoch_time)
- per_step_mseconds = epoch_mseconds / cb_params.batch_num
- print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
- per_step_mseconds,
- np.mean(self.losses)))
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- """
-
- Args:
- run_context:
-
- Returns:
-
- """
- cb_params = run_context.original_args()
- step_mseconds = (time.time() - self.step_time)
- step_loss = cb_params.net_outputs
-
- if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
- step_loss = step_loss[0]
- if isinstance(step_loss, Tensor):
- step_loss = np.mean(step_loss.asnumpy())
-
- self.losses.append(step_loss)
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
-
- print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:.9f}]".format(
- cb_params.cur_epoch_num -
- 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
- np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1].asnumpy()))
|