You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_assign_op.py 1.6 kB

5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. from mindspore import Tensor
  17. from mindspore.ops import operations as P
  18. import mindspore.nn as nn
  19. import numpy as np
  20. import mindspore.context as context
  21. class Net(nn.Cell):
  22. def __init__(self):
  23. super(Net, self).__init__()
  24. self.assign = P.Assign()
  25. def construct(self, var, value):
  26. return self.assign(var, value)
  27. x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
  28. value = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
  29. @pytest.mark.level0
  30. @pytest.mark.platform_x86_gpu_training
  31. @pytest.mark.env_onecard
  32. def test_assign():
  33. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  34. assign = Net()
  35. var = Tensor(x)
  36. output = assign(var, Tensor(value))
  37. error = np.ones(shape=[2, 2]) * 1.0e-6
  38. diff1 = output.asnumpy() - value
  39. diff2 = var.asnumpy() - value
  40. assert np.all(diff1 < error)
  41. assert np.all(-diff1 < error)
  42. assert np.all(diff2 < error)
  43. assert np.all(-diff2 < error)