You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equalcount_op.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. from mindspore import Tensor
  17. from mindspore.ops import operations as P
  18. import mindspore.nn as nn
  19. import numpy as np
  20. import mindspore.context as context
  21. from mindspore.common.initializer import initializer
  22. from mindspore.common.parameter import Parameter
  23. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  24. class NetEqualCount(nn.Cell):
  25. def __init__( self):
  26. super(NetEqualCount, self).__init__()
  27. self.equalcount = P.EqualCount()
  28. x = Tensor(np.array([1, 20, 5]).astype(np.int32))
  29. y = Tensor(np.array([2, 20, 5]).astype(np.int32))
  30. self.x = Parameter(initializer(x, x.shape()), name ='x')
  31. self.y = Parameter(initializer(y, y.shape()), name ='y')
  32. def construct(self):
  33. return self.equalcount(self.x, self.y)
  34. @pytest.mark.level0
  35. @pytest.mark.platform_x86_cpu
  36. @pytest.mark.env_onecard
  37. def test_equalcount():
  38. EqualCount = NetEqualCount()
  39. output = EqualCount()
  40. print("================================")
  41. expect = np.array([2]).astype(np.int32)
  42. print(output)
  43. assert (output.asnumpy() == expect).all()