|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import pytest
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.common.initializer import initializer
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class AlexNet(nn.Cell):
- def __init__(self, num_classes=10):
- super(AlexNet, self).__init__()
- self.batch_size = 32
- self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid")
- self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same")
- self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same")
- self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
- self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid")
- self.flatten = nn.Flatten()
- self.fc1 = nn.Dense(6*6*256, 4096)
- self.fc2 = nn.Dense(4096, 4096)
- self.fc3 = nn.Dense(4096, num_classes)
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv3(x)
- x = self.relu(x)
- x = self.conv4(x)
- x = self.relu(x)
- x = self.conv5(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_trainTensor(num_classes=10, epoch=15, batch_size=32):
- net = AlexNet(num_classes)
- lr = 0.1
- momentum = 0.9
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer)
- train_network.set_train()
- losses = []
- for i in range(0, epoch):
- data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([batch_size]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss)
- assert(losses[-1].asnumpy() < 0.01)
|