You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_gpu_alexnet.py 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. from __future__ import absolute_import
  16. from __future__ import division
  17. from __future__ import print_function
  18. import pytest
  19. import numpy as np
  20. import mindspore.context as context
  21. import mindspore.nn as nn
  22. from mindspore import Tensor
  23. from mindspore.nn.optim import Momentum
  24. from mindspore.ops import operations as P
  25. from mindspore.nn import TrainOneStepCell, WithLossCell
  26. from mindspore.common.initializer import initializer
  27. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  28. class AlexNet(nn.Cell):
  29. def __init__(self, num_classes=10):
  30. super(AlexNet, self).__init__()
  31. self.batch_size = 32
  32. self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid")
  33. self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same")
  34. self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same")
  35. self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
  36. self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
  37. self.relu = nn.ReLU()
  38. self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid")
  39. self.flatten = nn.Flatten()
  40. self.fc1 = nn.Dense(6*6*256, 4096)
  41. self.fc2 = nn.Dense(4096, 4096)
  42. self.fc3 = nn.Dense(4096, num_classes)
  43. def construct(self, x):
  44. x = self.conv1(x)
  45. x = self.relu(x)
  46. x = self.max_pool2d(x)
  47. x = self.conv2(x)
  48. x = self.relu(x)
  49. x = self.max_pool2d(x)
  50. x = self.conv3(x)
  51. x = self.relu(x)
  52. x = self.conv4(x)
  53. x = self.relu(x)
  54. x = self.conv5(x)
  55. x = self.relu(x)
  56. x = self.max_pool2d(x)
  57. x = self.flatten(x)
  58. x = self.fc1(x)
  59. x = self.relu(x)
  60. x = self.fc2(x)
  61. x = self.relu(x)
  62. x = self.fc3(x)
  63. return x
  64. @pytest.mark.level0
  65. @pytest.mark.platform_x86_gpu_training
  66. @pytest.mark.env_onecard
  67. def test_trainTensor(num_classes=10, epoch=15, batch_size=32):
  68. net = AlexNet(num_classes)
  69. lr = 0.1
  70. momentum = 0.9
  71. optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001)
  72. criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
  73. net_with_criterion = WithLossCell(net, criterion)
  74. train_network = TrainOneStepCell(net_with_criterion, optimizer)
  75. train_network.set_train()
  76. losses = []
  77. for i in range(0, epoch):
  78. data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01)
  79. label = Tensor(np.ones([batch_size]).astype(np.int32))
  80. loss = train_network(data, label)
  81. losses.append(loss)
  82. assert(losses[-1].asnumpy() < 0.01)