|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore.common.parameter import Parameter
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- class MomentumFusionNet(nn.Cell):
- def __init__(self, var, accum):
- super(MomentumFusionNet, self).__init__()
- self.op = P.ApplyMomentum()
- self.add = P.AddN()
- self.mul = P.Mul()
- self.var = Parameter(var, name="variable")
- self.accum = Parameter(accum, name="accumulate")
- self.lr = 0.1
- self.weight_decay = 0.002
- self.moment = 0.98
-
- def construct(self, grad):
- wd = self.mul(self.var, self.weight_decay)
- g = self.add((wd, grad))
- return self.op(self.var, self.accum, self.lr, g, self.moment)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_momentum_fusion():
- np.random.seed(42)
- var = Tensor(np.random.randn(10, 20).astype(np.float32))
- accum = Tensor(np.random.randn(10, 20).astype(np.float32))
- grad = Tensor(np.random.randn(10, 20).astype(np.float32))
-
- context.set_context(device_target='GPU', mode=context.GRAPH_MODE)
- net1 = MomentumFusionNet(var, accum)
- _ = net1(grad)
-
- context.set_context(device_target='GPU', mode=context.PYNATIVE_MODE)
- net2 = MomentumFusionNet(var, accum)
- _ = net2(grad)
-
- assert np.allclose(net1.var.data.asnumpy(), net2.var.data.asnumpy(), atol=1e-5)
- assert np.allclose(net1.accum.data.asnumpy(), net2.accum.data.asnumpy(), atol=1e-5)
|