You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_split.py 1.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore import Tensor
  19. import mindspore.nn as nn
  20. from mindspore.ops import operations as P
  21. class Net(nn.Cell):
  22. def __init__(self, axis=0, out_nums=1):
  23. super(Net, self).__init__()
  24. self.split = P.Split(axis, out_nums)
  25. def construct(self, x):
  26. return self.split(x)
  27. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_gpu_training
  30. @pytest.mark.env_onecard
  31. def test_split():
  32. x = np.array([[[1, -1, 1], [2, -2, 2]],
  33. [[3, -3, 3], [4, -4, 4]],
  34. [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)
  35. split_op = Net(0, 3)
  36. outputs = split_op(Tensor(x))
  37. for i, out in enumerate(outputs):
  38. assert (out.asnumpy() == x[i]).all()
  39. def test_split_4d():
  40. x_np = np.random.randn(2, 6, 4, 4).astype(np.float32)
  41. y = np.split(x_np, 3, axis=1)
  42. split_op = Net(1, 3)
  43. outputs = split_op(Tensor(x_np))
  44. for i, out in enumerate(outputs):
  45. assert (out.asnumpy() == y[i]).all()