|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.ops import composite as C
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class Net(nn.Cell):
- def __init__(self, shape, seed=0):
- super(Net, self).__init__()
- self.shape = shape
- self.seed = seed
-
- def construct(self, mean, stddev):
- return C.normal(self.shape, mean, stddev, self.seed)
-
-
- def test_net_1D():
- seed = 10
- shape = (3, 2, 4)
- mean = 1.0
- stddev = 1.0
- net = Net(shape, seed)
- tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
- output = net(tmean, tstddev)
- assert output.shape == (3, 2, 4)
-
-
- def test_net_ND():
- seed = 10
- shape = (3, 1, 2)
- mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
- stddev = np.array([1.0]).astype(np.float32)
- net = Net(shape, seed)
- tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
- output = net(tmean, tstddev)
- assert output.shape == (3, 2, 2)
|