You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv2d_op.py 2.3 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetConv2d(nn.Cell):
  22. def __init__(self):
  23. super(NetConv2d, self).__init__()
  24. out_channel = 2
  25. kernel_size = 1
  26. self.conv = P.Conv2D(out_channel,
  27. kernel_size,
  28. mode=1,
  29. pad_mode="valid",
  30. pad=0,
  31. stride=1,
  32. dilation=1,
  33. group=1)
  34. def construct(self, x, w):
  35. return self.conv(x, w)
  36. @pytest.mark.level0
  37. @pytest.mark.platform_x86_gpu_training
  38. @pytest.mark.env_onecard
  39. def test_conv2d():
  40. x = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
  41. w = Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32))
  42. expect = np.array([[[[45, 48, 51],
  43. [54, 57, 60],
  44. [63, 66, 69]],
  45. [[126, 138, 150],
  46. [162, 174, 186],
  47. [198, 210, 222]]]]).astype(np.float32)
  48. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", max_device_memory="0.2GB")
  49. conv2d = NetConv2d()
  50. output = conv2d(x, w)
  51. assert (output.asnumpy() == expect).all()
  52. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  53. conv2d = NetConv2d()
  54. output = conv2d(x, w)
  55. assert (output.asnumpy() == expect).all()