You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_assign_op.py 1.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor, Parameter
  20. from mindspore.ops import operations as P
  21. class Net(nn.Cell):
  22. def __init__(self, param):
  23. super(Net, self).__init__()
  24. self.var = Parameter(param, name="var")
  25. self.assign = P.Assign()
  26. def construct(self, param):
  27. return self.assign(self.var, param)
  28. x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
  29. value = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
  30. @pytest.mark.level0
  31. @pytest.mark.platform_x86_gpu_training
  32. @pytest.mark.env_onecard
  33. def test_assign():
  34. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  35. var = Tensor(x)
  36. assign = Net(var)
  37. output = assign(Tensor(value))
  38. error = np.ones(shape=[2, 2]) * 1.0e-6
  39. diff1 = output.asnumpy() - value
  40. diff2 = assign.var.default_input.asnumpy() - value
  41. assert np.all(diff1 < error)
  42. assert np.all(-diff1 < error)
  43. assert np.all(diff2 < error)
  44. assert np.all(-diff2 < error)