|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- GPT-2 finetune and evaluation script for LAMBADA task.
- """
- import argparse
- import math
- import time
-
- from mindspore import context
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- from mindspore.nn import AdamWeightDecay, Lamb, Momentum
- from mindspore.train.model import Model
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor, LossMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.gpt2_for_finetune import GPT2FinetuneCell, GPT2Lambada
- from src.finetune_eval_config import cfg, gpt2_net_cfg
- from src.utils.metric_method import LastWordAccuracy
- from src.dataset import create_language_model_dataset, create_lambada_control_dataset
- from src.utils.lr_schedule import GPT2LearningRate
- from src.utils.task_utils import get_final_word_label
- from src.utils.tokenization import Tokenizer
- from src.GPT2_generation import GenerateForLambada
- from src.utils.CrossEntropy import CrossEntropyCalculationWithMask
- from src.utils.get_config_setting import get_train_setting, get_model_setting
- from src.utils.task_utils import calculate_final_word_loss
-
-
- def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
- """
- Do train
- Args:
- dataset: the train dataset.
- network: the network with loss
- load_checkpoint_path: the file path which saved pretrain model checkpoint.
- save_checkpoint_path: the file path which will save finetune model checkpoint.
- epoch_num: the number of epoch
- """
- if load_checkpoint_path == "":
- raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
-
- steps_per_epoch = dataset.get_dataset_size()
-
- # optimizer
- if cfg.optimizer == 'AdamWeightDecay':
- lr_schedule = GPT2LearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
- end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
- warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
- decay_steps=steps_per_epoch * epoch_num,
- power=cfg.AdamWeightDecay.power)
- params = network.trainable_params()
-
- decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
- other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params))
- group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
- {'params': other_params, 'weight_decay': 0.0}]
- optimizer = AdamWeightDecay(group_params, lr_schedule, eps=cfg.AdamWeightDecay.eps)
- elif cfg.optimizer == 'Lamb':
- lr_schedule = GPT2LearningRate(learning_rate=cfg.Lamb.learning_rate,
- end_learning_rate=cfg.Lamb.end_learning_rate,
- warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
- decay_steps=steps_per_epoch * epoch_num,
- power=cfg.Lamb.power)
- optimizer = Lamb(network.trainable_params(), lr_schedule)
- elif cfg.optimizer == 'Momentum':
- optimizer = Momentum(network.trainable_params(), cfg.Momentum.learning_rate, cfg.Momentum.momentum)
- else:
- raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
-
- # load checkpoint into network
- ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
- prefix_name = "gpt2_" + "lambada_" + str(cfg.gpt2_network) + "_" + str(cfg.optimizer) + "_" \
- + str(epoch_num) + "_bs" + str(gpt2_net_cfg.batch_size)
- ckpoint_cb = ModelCheckpoint(prefix=prefix_name,
- directory=None if save_checkpoint_path == "" else save_checkpoint_path,
- config=ckpt_config)
- param_dict = load_checkpoint(load_checkpoint_path)
-
- final_param_dict = {}
- for name, _ in param_dict.items():
- final_param_dict['gpt2.gpt2.' + name] = param_dict[name]
- final_param_dict['gpt2.dense1.weight'] = param_dict['gpt2_embedding_lookup.embedding_table']
-
- load_param_into_net(network, final_param_dict)
- print("Load pretrained parameter successfully!\n")
-
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2 ** 32, scale_factor=2, scale_window=1000)
- netwithgrads = GPT2FinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
- netwithgrads.set_train(True)
-
- loss_cb = LossMonitor(per_print_times=1)
- model = Model(netwithgrads)
- callbacks = [TimeMonitor(dataset.get_dataset_size()), loss_cb, ckpoint_cb]
-
- print("==================== Starting Finetuning ====================")
- model.train(epoch_num, dataset, callbacks=callbacks, dataset_sink_mode=False)
- print("==================== Finetuning Success ====================")
-
-
- def eval_result_print(metric="accuracy", callback=None):
- """
- Print eval result.
- """
- if metric.lower() == "accuracy":
- print("acc_num {}, total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
- callback.acc_num / callback.total_num))
- else:
- raise ValueError("metric method not supported, support: [accuracy]")
-
-
- def do_eval(dataset=None, network=None, metric=None, load_checkpoint_path="", eval_type=None, stop_word_file="",
- generate_length_dynamic=True, tokenizer_file_path=""):
- """
- Do eval
- Args:
- dataset: the eval dataset.
- network: the network with loss.
- metric: the evaluation method.
- load_checkpoint_path: the file path which saved finetune model checkpoint.
- eval_type: the eval type, i.e. zero-shot, finetuned.
- generate_length_dynamic (bool): True for the generate length is dynamic, False for fixed. Default: True.
- tokenizer_file_path: the tokenizer file path for vocab file and merge file.
- stop_word_file: stop word file for calculating Accuracy.
- """
- if load_checkpoint_path == "":
- raise ValueError("Finetune model missed, evaluation task must load finetune model!")
-
- tokenizer = Tokenizer(vocab_file=tokenizer_file_path + 'gpt2-vocab.json',
- merge_file=tokenizer_file_path + 'gpt2-merges.txt')
-
- gpt2_lambada = network(config=gpt2_net_cfg,
- is_training=False,
- use_one_hot_embeddings=False)
- gpt2_lambada.set_train(False)
- param_dict = load_checkpoint(load_checkpoint_path)
-
- if eval_type == "zero-shot":
- final_param_dict = {}
- for name, _ in param_dict.items():
- final_param_dict['gpt2.gpt2.' + name] = param_dict[name]
- final_param_dict['gpt2.dense1.weight'] = param_dict['gpt2_embedding_lookup.embedding_table']
- load_param_into_net(gpt2_lambada, final_param_dict)
- print("load pretrained parameter successfully!\n")
- elif eval_type == "finetuned":
- load_param_into_net(gpt2_lambada, param_dict)
- print("load finetuned parameter successfully!\n")
-
- model = Model(gpt2_lambada)
-
- if metric.lower() == "accuracy":
- print("Prepare to calculate the accuracy score ...")
-
- callback = LastWordAccuracy()
- columns_list = ["input_ids", "input_mask", "input_length"]
- print("==================== [ACC] Testing ====================")
- lambada_generator = GenerateForLambada(decoder=model,
- config=gpt2_net_cfg,
- tokenizer=tokenizer,
- generate_length_dynamic=generate_length_dynamic,
- max_iterations=200,
- stop_word_file=stop_word_file)
-
- num_data = 1
- for data in dataset.create_dict_iterator():
- input_data = []
- for i in columns_list:
- input_data.append(data[i])
- input_ids, input_mask, input_length = input_data
- print("| [ACC] number : {} / {} ".format(num_data, dataset.get_dataset_size()))
-
- logits = model.predict(input_ids, input_mask)
- predict_str = lambada_generator.generate_for_lambada(input_ids=input_ids,
- logits=logits,
- input_length=input_length)
- label_str = get_final_word_label(input_ids=input_ids, input_length=input_length, tokenizer=tokenizer)
- callback.update(predict_str, label_str)
- eval_result_print(metric, callback)
- num_data += 1
-
- print("\n\n")
- print("**********************************************************")
- eval_result_print(metric, callback)
- print("******************** Testing Finished ********************")
-
- elif metric.lower() == "ppl":
- print("Prepare to calculate the ppl score ...")
- cross_entropy = CrossEntropyCalculationWithMask(is_training=True,
- num_labels=gpt2_net_cfg.vocab_size,
- config=gpt2_net_cfg)
- columns_list = ["input_ids", "input_mask", "input_length"]
- num_data = 1
- total_loss = 0.0
- print("==================== [PPL] Testing ====================")
- for data in dataset.create_dict_iterator():
- input_data = []
- for i in columns_list:
- input_data.append(data[i])
- input_ids, input_mask, input_length = input_data
- print("| [PPL] number : {} / {} ".format(num_data, dataset.get_dataset_size()))
-
- logits = model.predict(input_ids, input_mask) # (batch_size, seq_len, vocab_size)
- avg_batch_loss = calculate_final_word_loss(logits,
- gpt2_net_cfg.batch_size,
- input_ids,
- input_length,
- cross_entropy)
-
- total_loss += avg_batch_loss
- avg_total_loss = total_loss / num_data
- print(" | Current AVG loss:", avg_total_loss)
- print(" | Current AVG ppl:", math.exp(avg_total_loss))
- num_data += 1
-
- print("\n\n")
- print("**********************************************************")
- print("Average PPL: {:.6f}".format(math.exp(avg_total_loss)))
- print("******************** Testing Finished ********************")
-
- else:
-
- raise ValueError("metric method not supported, support: [accuracy, ppl]")
-
-
- def run_lambada():
- """
- Run Lambada task.
- """
- parser = argparse.ArgumentParser(description="Finetune and Evaluate languagemodel")
- parser.add_argument("--device_target", type=str, default="Ascend",
- help="Device type. Default: Ascend.")
- parser.add_argument("--device_id", type=int, default=2,
- help="ID of target device.")
- parser.add_argument("--metric_method", type=str, default="PPL",
- help="The eval method including [Accuracy, PPL]. Default: Accuracy.")
- parser.add_argument("--do_train", type=str, default="false",
- help="Enable train. Default: false.")
- parser.add_argument("--do_eval", type=str, default="true",
- help="Enable evaluation. Default: false.")
- parser.add_argument("--eval_type", type=str, default="finetuned",
- help="The type of evaluation including [zero-shot, finetuned]. Default: zero-shot.")
- parser.add_argument("--epoch_num", type=int, default=3,
- help="Epoch number. Default: 1.")
- parser.add_argument("--train_data_shuffle", type=str, default="false",
- help="Enable train data shuffle. Default: true.")
- parser.add_argument("--eval_data_shuffle", type=str, default="false",
- help="Enable eval data shuffle. Default: false.")
-
- parser.add_argument("--generate_length_dynamically", type=str, default="true",
- help="Enable generate_length_Dynamically. Default: true.")
- parser.add_argument("--save_finetune_ckpt_path", type=str, default="",
- help="Save the checkpoint path.")
- parser.add_argument("--load_pretrain_ckpt_path", type=str, default="",
- help="Load the checkpoint file path.")
- parser.add_argument("--load_finetune_ckpt_path", type=str, default="",
- help="Load the checkpoint file path.")
- parser.add_argument("--train_data_file_path", type=str, default="",
- help="Data path, it is better to use absolute path.")
- parser.add_argument("--eval_data_file_path", type=str, default="",
- help="Data path, it is better to use absolute path.")
- parser.add_argument("--tokenizer_file_path", type=str, default="",
- help="pretrained vocab and merge file path.")
- parser.add_argument("--stop_word_file_path", type=str, default="",
- help="The stop word file path.")
- args_opt = parser.parse_args()
-
- epoch_num = args_opt.epoch_num
- metric = args_opt.metric_method
- save_finetune_ckpt_path = args_opt.save_finetune_ckpt_path
- load_finetune_ckpt_path = args_opt.load_finetune_ckpt_path
- load_pretrain_ckpt_path = args_opt.load_pretrain_ckpt_path
-
- if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
- raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
- if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
- raise ValueError("'train_data_file_path' must be set when do finetune task")
- if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
- raise ValueError("'eval_data_file_path' must be set when do evaluation task")
-
- device = args_opt.device_target
- if device == "Ascend":
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- context.set_auto_parallel_context(parallel_mode="stand_alone")
- print(" | Device: {} | Device id: {}".format(device, args_opt.device_id))
- else:
- raise Exception("Device target error, Ascend is supported.")
-
- gpt2_loss = GPT2Lambada(config=gpt2_net_cfg,
- is_training=True,
- use_one_hot_embeddings=False)
-
- if args_opt.do_train.lower() == "true":
- get_train_setting(cfg)
- get_model_setting(cfg, gpt2_net_cfg)
- print("============== Start Loading Train Dataset ============")
- print(" | Train Dataset: {}".format(args_opt.train_data_file_path))
- print(" | Checkpoint: {}".format(args_opt.load_pretrain_ckpt_path))
- train_dataset = create_language_model_dataset(do_shuffle=(args_opt.train_data_shuffle.lower() == "true"),
- dataset_path=args_opt.train_data_file_path)
- do_train(train_dataset, gpt2_loss, load_pretrain_ckpt_path, save_finetune_ckpt_path, epoch_num)
-
- if args_opt.do_eval.lower() == "true":
- get_model_setting(cfg, gpt2_net_cfg)
- print("============== Start Loading Evaluation Dataset ============")
- print(" | Eval Dataset: {}".format(args_opt.eval_data_file_path))
- print(" | Checkpoint: {}".format(args_opt.load_finetune_ckpt_path))
- eval_dataset = create_lambada_control_dataset(do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"),
- dataset_path=args_opt.eval_data_file_path)
- do_eval(eval_dataset, GPT2Lambada, metric, load_finetune_ckpt_path, args_opt.eval_type,
- args_opt.stop_word_file_path, args_opt.generate_length_dynamically, args_opt.tokenizer_file_path)
-
-
- if __name__ == "__main__":
- print("Start Time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
- run_lambada()
- print("End Time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
|