You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_two_matmul.py 4.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import context
  16. import mindspore.nn as nn
  17. from mindspore.ops import operations as P
  18. from mindspore import Tensor
  19. from tests.ut.python.ops.test_math_ops import VirtualLoss
  20. import mindspore as ms
  21. from mindspore.common.api import _executor
  22. from mindspore.ops import composite as C
  23. class NetWithLoss(nn.Cell):
  24. def __init__(self, network):
  25. super(NetWithLoss, self).__init__()
  26. self.loss = VirtualLoss()
  27. self.network = network
  28. def construct(self, x, y, b):
  29. predict = self.network(x, y, b)
  30. return self.loss(predict)
  31. class GradWrap(nn.Cell):
  32. def __init__(self, network):
  33. super(GradWrap, self).__init__()
  34. self.network = network
  35. def construct(self, x, y, b):
  36. return C.grad_all(self.network)(x, y, b)
  37. def compile(net, x, y, b):
  38. net.set_auto_parallel()
  39. _executor.compile(net, x, y, b)
  40. # model_parallel test
  41. def test_two_matmul():
  42. class Net(nn.Cell):
  43. def __init__(self, strategy1, strategy2):
  44. super().__init__()
  45. self.matmul1 = P.MatMul().set_strategy(strategy1)
  46. self.matmul2 = P.MatMul().set_strategy(strategy2)
  47. def construct(self, x, y, b):
  48. out = self.matmul1(x, y)
  49. out = self.matmul2(out, b)
  50. return out
  51. context.set_auto_parallel_context(device_num=8, global_rank=0, mirror_mean=True)
  52. strategy1 = ((4, 2), (2, 1))
  53. strategy2 = ((2, 4), (4, 1))
  54. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  55. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  56. x = Tensor(np.ones([128, 32]), dtype=ms.float32)
  57. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  58. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  59. compile(net, x, y, b)
  60. def test_two_matmul_repeated_calculation1():
  61. class Net(nn.Cell):
  62. def __init__(self, strategy1, strategy2):
  63. super().__init__()
  64. self.matmul1 = P.MatMul().set_strategy(strategy1)
  65. self.matmul2 = P.MatMul().set_strategy(strategy2)
  66. def construct(self, x, y, b):
  67. out = self.matmul1(x, y)
  68. out = self.matmul2(out, b)
  69. return out
  70. context.set_auto_parallel_context(device_num=64, global_rank=5, mirror_mean=True)
  71. strategy1 = ((2, 4), (4, 8))
  72. strategy2 = ((1, 1), (1, 1))
  73. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  74. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  75. x = Tensor(np.ones([128, 32]), dtype=ms.float32)
  76. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  77. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  78. compile(net, x, y, b)
  79. def test_two_matmul_repeated_calculation2():
  80. class Net(nn.Cell):
  81. def __init__(self, strategy1, strategy2):
  82. super().__init__()
  83. self.matmul1 = P.MatMul().set_strategy(strategy1)
  84. self.matmul2 = P.MatMul().set_strategy(strategy2)
  85. def construct(self, x, y, b):
  86. out = self.matmul1(x, y)
  87. out = self.matmul2(out, b)
  88. return out
  89. context.set_auto_parallel_context(device_num=64, global_rank=15)
  90. strategy1 = ((2, 4), (4, 8))
  91. strategy2 = ((2, 2), (2, 1))
  92. net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
  93. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  94. x = Tensor(np.ones([128, 32]), dtype=ms.float32)
  95. y = Tensor(np.ones([32, 64]), dtype=ms.float32)
  96. b = Tensor(np.ones([64, 64]), dtype=ms.float32)
  97. compile(net, x, y, b)