|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test accuracy"""
- import math
- import numpy as np
- import pytest
- from mindspore.nn.metrics import Accuracy
- from mindspore import Tensor
-
- def test_classification_accuracy():
- """test_classification_accuracy"""
- x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y = Tensor(np.array([1, 0, 1]))
- y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
- metric = Accuracy('classification')
- metric.clear()
- metric.update(x, y)
- accuracy = metric.eval()
- accuracy2 = metric(x, y2)
- assert math.isclose(accuracy, 2/3)
- assert math.isclose(accuracy2, 2/3)
-
- def test_multilabel_accuracy():
- x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
- y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]]))
- metric = Accuracy('multilabel')
- metric.clear()
- metric.update(x, y)
- accuracy = metric.eval()
- assert accuracy == 1/3
-
- def test_shape_accuracy():
- x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
- y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1]]))
- metric = Accuracy('multilabel')
- metric.clear()
- with pytest.raises(ValueError):
- metric.update(x, y)
-
- def test_shape_accuracy2():
- x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
- y = Tensor(np.array([0, 1, 1, 1]))
- metric = Accuracy('multilabel')
- metric.clear()
- with pytest.raises(ValueError):
- metric.update(x, y)
-
- def test_shape_accuracy3():
- x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y = Tensor(np.array([[1, 0, 1], [1, 1, 1]]))
- metric = Accuracy('classification')
- metric.clear()
- with pytest.raises(ValueError):
- metric.update(x, y)
-
- def test_shape_accuracy4():
- x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y = Tensor(np.array(1))
- metric = Accuracy('classification')
- metric.clear()
- with pytest.raises(ValueError):
- metric.update(x, y)
-
- def test_type_accuracy():
- with pytest.raises(TypeError):
- Accuracy('test')
|