You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import os
  17. import argparse
  18. from dataset import create_dataset
  19. from lr_generator import get_lr
  20. from config import config
  21. from mindspore import context
  22. from mindspore import Tensor
  23. from mindspore.model_zoo.resnet import resnet50
  24. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  25. from mindspore.nn.optim.momentum import Momentum
  26. from mindspore.train.model import Model, ParallelMode
  27. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  28. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore.communication.management import init, get_rank, get_group_size
  31. import mindspore.nn as nn
  32. import mindspore.common.initializer as weight_init
  33. from crossentropy import CrossEntropy
  34. parser = argparse.ArgumentParser(description='Image classification')
  35. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  36. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  37. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  38. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  39. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  40. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  41. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  42. args_opt = parser.parse_args()
  43. if __name__ == '__main__':
  44. target = args_opt.device_target
  45. ckpt_save_dir = config.save_checkpoint_path
  46. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  47. if not args_opt.do_eval and args_opt.run_distribute:
  48. if target == "Ascend":
  49. device_id = int(os.getenv('DEVICE_ID'))
  50. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id,
  51. enable_auto_mixed_precision=True)
  52. init()
  53. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  54. mirror_mean=True)
  55. auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
  56. ckpt_save_dir = config.save_checkpoint_path
  57. elif target == "GPU":
  58. context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
  59. init("nccl")
  60. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  61. mirror_mean=True)
  62. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  63. epoch_size = config.epoch_size
  64. net = resnet50(class_num=config.class_num)
  65. # weight init
  66. if args_opt.pre_trained:
  67. param_dict = load_checkpoint(args_opt.pre_trained)
  68. load_param_into_net(net, param_dict)
  69. epoch_size = config.epoch_size - config.pretrained_epoch_size
  70. else:
  71. for _, cell in net.cells_and_names():
  72. if isinstance(cell, nn.Conv2d):
  73. cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
  74. cell.weight.default_input.shape(),
  75. cell.weight.default_input.dtype()).to_tensor()
  76. if isinstance(cell, nn.Dense):
  77. cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
  78. cell.weight.default_input.shape(),
  79. cell.weight.default_input.dtype()).to_tensor()
  80. if not config.use_label_smooth:
  81. config.label_smooth_factor = 0.0
  82. loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  83. if args_opt.do_train:
  84. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
  85. repeat_num=epoch_size, batch_size=config.batch_size, target=target)
  86. step_size = dataset.get_dataset_size()
  87. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  88. lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
  89. total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
  90. if args_opt.pre_trained:
  91. lr = lr[config.pretrained_epoch_size * step_size:]
  92. lr = Tensor(lr)
  93. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  94. config.weight_decay, config.loss_scale)
  95. if target == "Ascend":
  96. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  97. amp_level="O2", keep_batchnorm_fp32=False)
  98. elif target == "GPU":
  99. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
  100. time_cb = TimeMonitor(data_size=step_size)
  101. loss_cb = LossMonitor()
  102. cb = [time_cb, loss_cb]
  103. if config.save_checkpoint:
  104. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
  105. keep_checkpoint_max=config.keep_checkpoint_max)
  106. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  107. cb += [ckpt_cb]
  108. model.train(epoch_size, dataset, callbacks=cb)