You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. # Contents
  2. - [Contents](#contents)
  3. - [Unet Description](#unet-description)
  4. - [Model Architecture](#model-architecture)
  5. - [Dataset](#dataset)
  6. - [Environment Requirements](#environment-requirements)
  7. - [Quick Start](#quick-start)
  8. - [Script Description](#script-description)
  9. - [Script and Sample Code](#script-and-sample-code)
  10. - [Script Parameters](#script-parameters)
  11. - [Training Process](#training-process)
  12. - [Training](#training)
  13. - [running on Ascend](#running-on-ascend)
  14. - [Distributed Training](#distributed-training)
  15. - [Evaluation Process](#evaluation-process)
  16. - [Evaluation](#evaluation)
  17. - [Model Description](#model-description)
  18. - [Performance](#performance)
  19. - [Evaluation Performance](#evaluation-performance)
  20. - [How to use](#how-to-use)
  21. - [Inference](#inference)
  22. - [Running on Ascend 310](#running-on-ascend-310)
  23. - [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
  24. - [Transfer training](#transfer-training)
  25. - [Description of Random Situation](#description-of-random-situation)
  26. - [ModelZoo Homepage](#modelzoo-homepage)
  27. ## [Unet Description](#contents)
  28. Unet Medical model for 2D image segmentation. This implementation is as described in the original paper [UNet: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597). Unet, in the 2015 ISBI cell tracking competition, many of the best are obtained. In this paper, a network model for medical image segmentation is proposed, and a data enhancement method is proposed to effectively use the annotation data to solve the problem of insufficient annotation data in the medical field. A U-shaped network structure is also used to extract the context and location information.
  29. [Paper](https://arxiv.org/abs/1505.04597): Olaf Ronneberger, Philipp Fischer, Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation." *conditionally accepted at MICCAI 2015*. 2015.
  30. ## [Model Architecture](#contents)
  31. Specifically, the U network structure is proposed in UNET, which can better extract and fuse high-level features and obtain context information and spatial location information. The U network structure is composed of encoder and decoder. The encoder is composed of two 3x3 conv and a 2x2 max pooling iteration. The number of channels is doubled after each down sampling. The decoder is composed of a 2x2 deconv, concat layer and two 3x3 convolutions, and then outputs after a 1x1 convolution.
  32. ## [Dataset](#contents)
  33. Dataset used: [ISBI Challenge](http://brainiac2.mit.edu/isbi_challenge/home)
  34. - Description: The training and test datasets are two stacks of 30 sections from a serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve cord (VNC). The microcube measures 2 x 2 x 1.5 microns approx., with a resolution of 4x4x50 nm/pixel.
  35. - License: You are free to use this data set for the purpose of generating or testing non-commercial image segmentation software. If any scientific publications derive from the usage of this data set, you must cite TrakEM2 and the following publication: Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V. 2010. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy. PLoS Biol 8(10): e1000502. doi:10.1371/journal.pbio.1000502.
  36. - Dataset size:22.5M,
  37. - Train:15M, 30 images (Training data contains 2 multi-page TIF files, each containing 30 2D-images. train-volume.tif and train-labels.tif respectly contain data and label.)
  38. - Val:(We randomly divide the training data into 5-fold and evaluate the model by across 5-fold cross-validation.)
  39. - Test:7.5M, 30 images (Testing data contains 1 multi-page TIF files, each containing 30 2D-images. test-volume.tif respectly contain data.)
  40. - Data format:binary files(TIF file)
  41. - Note:Data will be processed in src/data_loader.py
  42. ## [Environment Requirements](#contents)
  43. - Hardware(Ascend)
  44. - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
  45. - Framework
  46. - [MindSpore](https://www.mindspore.cn/install/en)
  47. - For more information, please check the resources below:
  48. - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
  49. - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
  50. ## [Quick Start](#contents)
  51. After installing MindSpore via the official website, you can start training and evaluation as follows:
  52. - Run on Ascend
  53. ```python
  54. # run training example
  55. python train.py --data_url=/path/to/data/ > train.log 2>&1 &
  56. OR
  57. bash scripts/run_standalone_train.sh [DATASET]
  58. # run distributed training example
  59. bash scripts/run_distribute_train.sh [RANK_TABLE_FILE] [DATASET]
  60. # run evaluation example
  61. python eval.py --data_url=/path/to/data/ --ckpt_path=/path/to/checkpoint/ > eval.log 2>&1 &
  62. OR
  63. bash scripts/run_standalone_eval.sh [DATASET] [CHECKPOINT]
  64. ```
  65. - Run on docker
  66. Build docker images(Change version to the one you actually used)
  67. ```shell
  68. # build docker
  69. docker build -t unet:20.1.0 . --build-arg FROM_IMAGE_NAME=ascend-mindspore-arm:20.1.0
  70. ```
  71. Create a container layer over the created image and start it
  72. ```shell
  73. # start docker
  74. bash scripts/docker_start.sh unet:20.1.0 [DATA_DIR] [MODEL_DIR]
  75. ```
  76. Then you can run everything just like on ascend.
  77. ## [Script Description](#contents)
  78. ### [Script and Sample Code](#contents)
  79. ```shell
  80. ├── model_zoo
  81. ├── README.md // descriptions about all the models
  82. ├── unet
  83. ├── README.md // descriptions about Unet
  84. ├── scripts
  85. │ ├──run_standalone_train.sh // shell script for distributed on Ascend
  86. │ ├──run_standalone_eval.sh // shell script for evaluation on Ascend
  87. ├── src
  88. │ ├──config.py // parameter configuration
  89. │ ├──data_loader.py // creating dataset
  90. │ ├──loss.py // loss
  91. │ ├──utils.py // General components (callback function)
  92. │ ├──unet.py // Unet architecture
  93. ├──__init__.py // init file
  94. ├──unet_model.py // unet model
  95. ├──unet_parts.py // unet part
  96. ├── train.py // training script
  97. ├──launch_8p.py // training 8P script
  98. ├── eval.py // evaluation script
  99. ```
  100. ### [Script Parameters](#contents)
  101. Parameters for both training and evaluation can be set in config.py
  102. - config for Unet, ISBI dataset
  103. ```python
  104. 'name': 'Unet', # model name
  105. 'lr': 0.0001, # learning rate
  106. 'epochs': 400, # total training epochs when run 1p
  107. 'distribute_epochs': 1600, # total training epochs when run 8p
  108. 'batchsize': 16, # training batch size
  109. 'cross_valid_ind': 1, # cross valid ind
  110. 'num_classes': 2, # the number of classes in the dataset
  111. 'num_channels': 1, # the number of channels
  112. 'keep_checkpoint_max': 10, # only keep the last keep_checkpoint_max checkpoint
  113. 'weight_decay': 0.0005, # weight decay value
  114. 'loss_scale': 1024.0, # loss scale
  115. 'FixedLossScaleManager': 1024.0, # fix loss scale
  116. 'resume': False, # whether training with pretrain model
  117. 'resume_ckpt': './', # pretrain model path
  118. 'transfer_training': False # whether do transfer training
  119. 'filter_weight': ["final.weight"] # weight name to filter while doing transfer training
  120. ```
  121. ## [Training Process](#contents)
  122. ### Training
  123. #### running on Ascend
  124. ```shell
  125. python train.py --data_url=/path/to/data/ > train.log 2>&1 &
  126. OR
  127. bash scripts/run_standalone_train.sh [DATASET]
  128. ```
  129. The python command above will run in the background, you can view the results through the file `train.log`.
  130. After training, you'll get some checkpoint files under the script folder by default. The loss value will be achieved as follows:
  131. ```shell
  132. # grep "loss is " train.log
  133. step: 1, loss is 0.7011719, fps is 0.25025035060906264
  134. step: 2, loss is 0.69433594, fps is 56.77693756377044
  135. step: 3, loss is 0.69189453, fps is 57.3293877244179
  136. step: 4, loss is 0.6894531, fps is 57.840651522059716
  137. step: 5, loss is 0.6850586, fps is 57.89903776054361
  138. step: 6, loss is 0.6777344, fps is 58.08073627299014
  139. ...
  140. step: 597, loss is 0.19030762, fps is 58.28088370287449
  141. step: 598, loss is 0.19958496, fps is 57.95493929352674
  142. step: 599, loss is 0.18371582, fps is 58.04039977720966
  143. step: 600, loss is 0.22070312, fps is 56.99692546024671
  144. ```
  145. The model checkpoint will be saved in the current directory.
  146. #### Distributed Training
  147. ```shell
  148. bash scripts/run_distribute_train.sh [RANK_TABLE_FILE] [DATASET]
  149. ```
  150. The above shell script will run distribute training in the background. You can view the results through the file `logs/device[X]/log.log`. The loss value will be achieved as follows:
  151. ```shell
  152. # grep "loss is" logs/device0/log.log
  153. step: 1, loss is 0.70524895, fps is 0.15914689861221412
  154. step: 2, loss is 0.6925452, fps is 56.43668656967454
  155. ...
  156. step: 299, loss is 0.20551169, fps is 58.4039329983891
  157. step: 300, loss is 0.18949677, fps is 57.63118508760329
  158. ```
  159. ## [Evaluation Process](#contents)
  160. ### Evaluation
  161. - evaluation on ISBI dataset when running on Ascend
  162. Before running the command below, please check the checkpoint path used for evaluation. Please set the checkpoint path to be the absolute full path, e.g., "username/unet/ckpt_unet_medical_adam-48_600.ckpt".
  163. ```shell
  164. python eval.py --data_url=/path/to/data/ --ckpt_path=/path/to/checkpoint/ > eval.log 2>&1 &
  165. OR
  166. bash scripts/run_standalone_eval.sh [DATASET] [CHECKPOINT]
  167. ```
  168. The above python command will run in the background. You can view the results through the file "eval.log". The accuracy of the test dataset will be as follows:
  169. ```shell
  170. # grep "Cross valid dice coeff is:" eval.log
  171. ============== Cross valid dice coeff is: {'dice_coeff': 0.9085704886070473}
  172. ```
  173. ## [Model Description](#contents)
  174. ### [Performance](#contents)
  175. #### Evaluation Performance
  176. | Parameters | Ascend |
  177. | -------------------------- | ------------------------------------------------------------ |
  178. | Model Version | Unet |
  179. | Resource | Ascend 910 ;CPU 2.60GHz,192cores; Memory,755G |
  180. | uploaded Date | 09/15/2020 (month/day/year) |
  181. | MindSpore Version | 1.0.0 |
  182. | Dataset | ISBI |
  183. | Training Parameters | 1pc: epoch=400, total steps=600, batch_size = 16, lr=0.0001 |
  184. | | 8pc: epoch=1600, total steps=300, batch_size = 16, lr=0.0001 |
  185. | Optimizer | ADAM |
  186. | Loss Function | Softmax Cross Entropy |
  187. | outputs | probability |
  188. | Loss | 0.22070312 |
  189. | Speed | 1pc: 267 ms/step; 8pc: 280 ms/step; |
  190. | Total time | 1pc: 2.67 mins; 8pc: 1.40 mins |
  191. | Parameters (M) | 93M |
  192. | Checkpoint for Fine tuning | 355.11M (.ckpt file) |
  193. | Scripts | [unet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/unet) |
  194. ### [How to use](#contents)
  195. #### Inference
  196. If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
  197. ##### Running on Ascend 310
  198. Export MindIR
  199. ```shell
  200. python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
  201. ```
  202. The ckpt_file parameter is required,
  203. `EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
  204. Before performing inference, the MINDIR file must be exported by export script on the 910 environment.
  205. Current batch_size can only be set to 1.
  206. ```shell
  207. # Ascend310 inference
  208. bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
  209. ```
  210. `DEVICE_ID` is optional, default value is 0.
  211. Inference result is saved in current path, you can find result in acc.log file.
  212. ```text
  213. Cross valid dice coeff is: 0.9054352151297033
  214. ```
  215. #### Continue Training on the Pretrained Model
  216. Set options `resume` to True in `config.py`, and set `resume_ckpt` to the path of your checkpoint. e.g.
  217. ```python
  218. 'resume': True,
  219. 'resume_ckpt': 'ckpt_0/ckpt_unet_medical_adam_1-1_600.ckpt',
  220. 'transfer_training': False,
  221. 'filter_weight': ["final.weight"]
  222. ```
  223. #### Transfer training
  224. Do the same thing as resuming traing above. In addition, set `transfer_training` to True. The `filter_weight` shows the weights which will be filtered for different dataset. Usually, the default value of `filter_weight` don't need to be changed. The default values includes the weights which depends on the class number. e.g.
  225. ```python
  226. 'resume': True,
  227. 'resume_ckpt': 'ckpt_0/ckpt_unet_medical_adam_1-1_600.ckpt',
  228. 'transfer_training': True,
  229. 'filter_weight': ["final.weight"]
  230. ```
  231. ## [Description of Random Situation](#contents)
  232. In data_loader.py, we set the seed inside “_get_val_train_indices" function. We also use random seed in train.py.
  233. ## [ModelZoo Homepage](#contents)
  234. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).