You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import os
  16. import argparse
  17. import logging
  18. import ast
  19. import mindspore
  20. import mindspore.nn as nn
  21. from mindspore import Model, context
  22. from mindspore.communication.management import init, get_group_size
  23. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
  24. from mindspore.context import ParallelMode
  25. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  26. from src.unet import UNet
  27. from src.data_loader import create_dataset
  28. from src.loss import CrossEntropyWithLogits
  29. from src.utils import StepLossTimeMonitor
  30. from src.config import cfg_unet
  31. device_id = int(os.getenv('DEVICE_ID'))
  32. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
  33. mindspore.set_seed(1)
  34. def train_net(data_dir,
  35. cross_valid_ind=1,
  36. epochs=400,
  37. batch_size=16,
  38. lr=0.0001,
  39. run_distribute=False,
  40. cfg=None):
  41. if run_distribute:
  42. init()
  43. group_size = get_group_size()
  44. parallel_mode = ParallelMode.DATA_PARALLEL
  45. context.set_auto_parallel_context(parallel_mode=parallel_mode,
  46. device_num=group_size,
  47. gradients_mean=False)
  48. net = UNet(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
  49. if cfg['resume']:
  50. param_dict = load_checkpoint(cfg['resume_ckpt'])
  51. load_param_into_net(net, param_dict)
  52. criterion = CrossEntropyWithLogits()
  53. train_dataset, _ = create_dataset(data_dir, epochs, batch_size, True, cross_valid_ind, run_distribute)
  54. train_data_size = train_dataset.get_dataset_size()
  55. print("dataset length is:", train_data_size)
  56. ckpt_config = CheckpointConfig(save_checkpoint_steps=train_data_size,
  57. keep_checkpoint_max=cfg['keep_checkpoint_max'])
  58. ckpoint_cb = ModelCheckpoint(prefix='ckpt_unet_medical_adam',
  59. directory='./ckpt_{}/'.format(device_id),
  60. config=ckpt_config)
  61. optimizer = nn.Adam(params=net.trainable_params(), learning_rate=lr, weight_decay=cfg['weight_decay'],
  62. loss_scale=cfg['loss_scale'])
  63. loss_scale_manager = mindspore.train.loss_scale_manager.FixedLossScaleManager(cfg['FixedLossScaleManager'], False)
  64. model = Model(net, loss_fn=criterion, loss_scale_manager=loss_scale_manager, optimizer=optimizer, amp_level="O3")
  65. print("============== Starting Training ==============")
  66. model.train(1, train_dataset, callbacks=[StepLossTimeMonitor(batch_size=batch_size), ckpoint_cb],
  67. dataset_sink_mode=False)
  68. print("============== End Training ==============")
  69. def get_args():
  70. parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
  71. formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  72. parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
  73. help='data directory')
  74. parser.add_argument('-t', '--run_distribute', type=ast.literal_eval,
  75. default=False, help='Run distribute, default: false.')
  76. return parser.parse_args()
  77. if __name__ == '__main__':
  78. logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
  79. args = get_args()
  80. print("Training setting:", args)
  81. epoch_size = cfg_unet['epochs'] if not args.run_distribute else cfg_unet['distribute_epochs']
  82. train_net(data_dir=args.data_url,
  83. cross_valid_ind=cfg_unet['cross_valid_ind'],
  84. epochs=epoch_size,
  85. batch_size=cfg_unet['batchsize'],
  86. lr=cfg_unet['lr'],
  87. run_distribute=args.run_distribute,
  88. cfg=cfg_unet)