You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_sharpness.py 13 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomSharpness op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.vision.py_transforms as F
  22. import mindspore.dataset.transforms.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, \
  25. config_get_set_seed, config_get_set_num_parallel_workers
  26. DATA_DIR = "../data/dataset/testImageNetData/train/"
  27. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  28. GENERATE_GOLDEN = False
  29. def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
  30. """
  31. Test RandomSharpness python op
  32. """
  33. logger.info("Test RandomSharpness python op")
  34. # Original Images
  35. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  36. transforms_original = F.ComposeOp([F.Decode(),
  37. F.Resize((224, 224)),
  38. F.ToTensor()])
  39. ds_original = data.map(input_columns="image",
  40. operations=transforms_original())
  41. ds_original = ds_original.batch(512)
  42. for idx, (image, _) in enumerate(ds_original):
  43. if idx == 0:
  44. images_original = np.transpose(image, (0, 2, 3, 1))
  45. else:
  46. images_original = np.append(images_original,
  47. np.transpose(image, (0, 2, 3, 1)),
  48. axis=0)
  49. # Random Sharpness Adjusted Images
  50. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  51. py_op = F.RandomSharpness()
  52. if degrees is not None:
  53. py_op = F.RandomSharpness(degrees)
  54. transforms_random_sharpness = F.ComposeOp([F.Decode(),
  55. F.Resize((224, 224)),
  56. py_op,
  57. F.ToTensor()])
  58. ds_random_sharpness = data.map(input_columns="image",
  59. operations=transforms_random_sharpness())
  60. ds_random_sharpness = ds_random_sharpness.batch(512)
  61. for idx, (image, _) in enumerate(ds_random_sharpness):
  62. if idx == 0:
  63. images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
  64. else:
  65. images_random_sharpness = np.append(images_random_sharpness,
  66. np.transpose(image, (0, 2, 3, 1)),
  67. axis=0)
  68. num_samples = images_original.shape[0]
  69. mse = np.zeros(num_samples)
  70. for i in range(num_samples):
  71. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  72. logger.info("MSE= {}".format(str(np.mean(mse))))
  73. if plot:
  74. visualize_list(images_original, images_random_sharpness)
  75. def test_random_sharpness_py_md5():
  76. """
  77. Test RandomSharpness python op with md5 comparison
  78. """
  79. logger.info("Test RandomSharpness python op with md5 comparison")
  80. original_seed = config_get_set_seed(5)
  81. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  82. # define map operations
  83. transforms = [
  84. F.Decode(),
  85. F.RandomSharpness((20.0, 25.0)),
  86. F.ToTensor()
  87. ]
  88. transform = F.ComposeOp(transforms)
  89. # Generate dataset
  90. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  91. data = data.map(input_columns=["image"], operations=transform())
  92. # check results with md5 comparison
  93. filename = "random_sharpness_py_01_result.npz"
  94. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  95. # Restore configuration
  96. ds.config.set_seed(original_seed)
  97. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  98. def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
  99. """
  100. Test RandomSharpness cpp op
  101. """
  102. print(degrees)
  103. logger.info("Test RandomSharpness cpp op")
  104. # Original Images
  105. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  106. transforms_original = [C.Decode(),
  107. C.Resize((224, 224))]
  108. ds_original = data.map(input_columns="image",
  109. operations=transforms_original)
  110. ds_original = ds_original.batch(512)
  111. for idx, (image, _) in enumerate(ds_original):
  112. if idx == 0:
  113. images_original = image
  114. else:
  115. images_original = np.append(images_original,
  116. image,
  117. axis=0)
  118. # Random Sharpness Adjusted Images
  119. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  120. c_op = C.RandomSharpness()
  121. if degrees is not None:
  122. c_op = C.RandomSharpness(degrees)
  123. transforms_random_sharpness = [C.Decode(),
  124. C.Resize((224, 224)),
  125. c_op]
  126. ds_random_sharpness = data.map(input_columns="image",
  127. operations=transforms_random_sharpness)
  128. ds_random_sharpness = ds_random_sharpness.batch(512)
  129. for idx, (image, _) in enumerate(ds_random_sharpness):
  130. if idx == 0:
  131. images_random_sharpness = image
  132. else:
  133. images_random_sharpness = np.append(images_random_sharpness,
  134. image,
  135. axis=0)
  136. num_samples = images_original.shape[0]
  137. mse = np.zeros(num_samples)
  138. for i in range(num_samples):
  139. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  140. logger.info("MSE= {}".format(str(np.mean(mse))))
  141. if plot:
  142. visualize_list(images_original, images_random_sharpness)
  143. def test_random_sharpness_c_md5():
  144. """
  145. Test RandomSharpness cpp op with md5 comparison
  146. """
  147. logger.info("Test RandomSharpness cpp op with md5 comparison")
  148. original_seed = config_get_set_seed(200)
  149. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  150. # define map operations
  151. transforms = [
  152. C.Decode(),
  153. C.RandomSharpness((10.0, 15.0))
  154. ]
  155. # Generate dataset
  156. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  157. data = data.map(input_columns=["image"], operations=transforms)
  158. # check results with md5 comparison
  159. filename = "random_sharpness_cpp_01_result.npz"
  160. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  161. # Restore configuration
  162. ds.config.set_seed(original_seed)
  163. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  164. def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
  165. """
  166. Test Random Sharpness C and python Op
  167. """
  168. logger.info("Test RandomSharpness C and python Op")
  169. # RandomSharpness Images
  170. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  171. data = data.map(input_columns=["image"],
  172. operations=[C.Decode(),
  173. C.Resize((200, 300))])
  174. python_op = F.RandomSharpness(degrees)
  175. c_op = C.RandomSharpness(degrees)
  176. transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
  177. python_op,
  178. np.array])()
  179. ds_random_sharpness_py = data.map(input_columns="image",
  180. operations=transforms_op)
  181. ds_random_sharpness_py = ds_random_sharpness_py.batch(512)
  182. for idx, (image, _) in enumerate(ds_random_sharpness_py):
  183. if idx == 0:
  184. images_random_sharpness_py = image
  185. else:
  186. images_random_sharpness_py = np.append(images_random_sharpness_py,
  187. image,
  188. axis=0)
  189. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  190. data = data.map(input_columns=["image"],
  191. operations=[C.Decode(),
  192. C.Resize((200, 300))])
  193. ds_images_random_sharpness_c = data.map(input_columns="image",
  194. operations=c_op)
  195. ds_images_random_sharpness_c = ds_images_random_sharpness_c.batch(512)
  196. for idx, (image, _) in enumerate(ds_images_random_sharpness_c):
  197. if idx == 0:
  198. images_random_sharpness_c = image
  199. else:
  200. images_random_sharpness_c = np.append(images_random_sharpness_c,
  201. image,
  202. axis=0)
  203. num_samples = images_random_sharpness_c.shape[0]
  204. mse = np.zeros(num_samples)
  205. for i in range(num_samples):
  206. mse[i] = diff_mse(images_random_sharpness_c[i], images_random_sharpness_py[i])
  207. logger.info("MSE= {}".format(str(np.mean(mse))))
  208. if plot:
  209. visualize_list(images_random_sharpness_c, images_random_sharpness_py, visualize_mode=2)
  210. def test_random_sharpness_one_channel_c(degrees=(1.4, 1.4), plot=False):
  211. """
  212. Test Random Sharpness cpp op with one channel
  213. """
  214. logger.info("Test RandomSharpness C Op With MNIST Dataset (Grayscale images)")
  215. c_op = C.RandomSharpness()
  216. if degrees is not None:
  217. c_op = C.RandomSharpness(degrees)
  218. # RandomSharpness Images
  219. data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  220. ds_random_sharpness_c = data.map(input_columns="image", operations=c_op)
  221. # Original images
  222. data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  223. images = []
  224. images_trans = []
  225. labels = []
  226. for _, (data_orig, data_trans) in enumerate(zip(data, ds_random_sharpness_c)):
  227. image_orig, label_orig = data_orig
  228. image_trans, _ = data_trans
  229. images.append(image_orig)
  230. labels.append(label_orig)
  231. images_trans.append(image_trans)
  232. if plot:
  233. visualize_one_channel_dataset(images, images_trans, labels)
  234. def test_random_sharpness_invalid_params():
  235. """
  236. Test RandomSharpness with invalid input parameters.
  237. """
  238. logger.info("Test RandomSharpness with invalid input parameters.")
  239. try:
  240. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  241. data = data.map(input_columns=["image"],
  242. operations=[C.Decode(),
  243. C.Resize((224, 224)),
  244. C.RandomSharpness(10)])
  245. except TypeError as error:
  246. logger.info("Got an exception in DE: {}".format(str(error)))
  247. assert "tuple" in str(error)
  248. try:
  249. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  250. data = data.map(input_columns=["image"],
  251. operations=[C.Decode(),
  252. C.Resize((224, 224)),
  253. C.RandomSharpness((-10, 10))])
  254. except ValueError as error:
  255. logger.info("Got an exception in DE: {}".format(str(error)))
  256. assert "interval" in str(error)
  257. try:
  258. data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  259. data = data.map(input_columns=["image"],
  260. operations=[C.Decode(),
  261. C.Resize((224, 224)),
  262. C.RandomSharpness((10, 5))])
  263. except ValueError as error:
  264. logger.info("Got an exception in DE: {}".format(str(error)))
  265. assert "(min,max)" in str(error)
  266. if __name__ == "__main__":
  267. test_random_sharpness_py(plot=True)
  268. test_random_sharpness_py(None, plot=True) # Test with default values
  269. test_random_sharpness_py(degrees=(20.0, 25.0), plot=True) # Test with degree values that show more obvious transformation
  270. test_random_sharpness_py_md5()
  271. test_random_sharpness_c(plot=True)
  272. test_random_sharpness_c(None, plot=True) # test with default values
  273. test_random_sharpness_c(degrees=[10, 15], plot=True) # Test with degrees values that show more obvious transformation
  274. test_random_sharpness_c_md5()
  275. test_random_sharpness_c_py(degrees=[1.5, 1.5], plot=True)
  276. test_random_sharpness_c_py(degrees=[1, 1], plot=True)
  277. test_random_sharpness_c_py(degrees=[10, 10], plot=True)
  278. test_random_sharpness_one_channel_c(degrees=[1.7, 1.7], plot=True)
  279. test_random_sharpness_one_channel_c(degrees=None, plot=True) # Test with default values
  280. test_random_sharpness_invalid_params()