You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_cauchy_pynative.py 2.5 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """test cases for cauchy distribution"""
  16. import pytest
  17. import numpy as np
  18. import mindspore.context as context
  19. import mindspore.nn as nn
  20. import mindspore.nn.probability.distribution as msd
  21. from mindspore import Tensor
  22. from mindspore import dtype as ms
  23. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  24. class CauchyMean(nn.Cell):
  25. def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
  26. super().__init__()
  27. self.b = msd.Cauchy(loc, scale, seed, dtype, name)
  28. def construct(self):
  29. out4 = self.b.entropy()
  30. return out4
  31. @pytest.mark.level0
  32. @pytest.mark.platform_arm_ascend_training
  33. @pytest.mark.env_onecard
  34. def test_probability_cauchy_mean_loc_scale_rand_2_ndarray():
  35. loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
  36. scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
  37. net = CauchyMean(loc, scale)
  38. net()
  39. class CauchyProb(nn.Cell):
  40. def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
  41. super().__init__()
  42. self.b = msd.Cauchy(loc, scale, seed, dtype, name)
  43. def construct(self, value):
  44. out1 = self.b.prob(value)
  45. out2 = self.b.log_prob(value)
  46. out3 = self.b.cdf(value)
  47. out4 = self.b.log_cdf(value)
  48. out5 = self.b.survival_function(value)
  49. out6 = self.b.log_survival(value)
  50. return out1, out2, out3, out4, out5, out6
  51. @pytest.mark.level0
  52. @pytest.mark.platform_arm_ascend_training
  53. @pytest.mark.env_onecard
  54. def test_probability_cauchy_prob_cdf_loc_scale_rand_4_ndarray():
  55. loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
  56. scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
  57. value = np.random.randn(1024, 512, 7, 7).astype(np.float32)
  58. net = CauchyProb(loc, scale)
  59. net(Tensor(value))