# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Predefined watchpoints. This module predefine recommend watchpoints. """ import math import queue as Queue from mindinsight.debugger.conditionmgr.conditionmgr import ConditionMgr from mindinsight.debugger.conditionmgr.condition import TargetTypeEnum from mindinsight.debugger.conditionmgr.condition import ConditionIdEnum from mindinsight.debugger.conditionmgr.condition import ActivationFuncEnum from mindinsight.debugger.conditionmgr.common.utils import NodeBasicInfo from mindinsight.debugger.conditionmgr.log import logger from mindinsight.conf import settings from mindinsight.debugger.stream_cache.watchpoint import WatchNodeTree class _WatchPointData: """ WatchPoint data container Args: watch_condition (dict): The dict of watch conditions. watch_nodes (list[NodeBasicInfo]): The list of node basic info. name (str): The name of watchpoint. """ def __init__(self, watch_condition, watch_nodes, name): self.watch_condition = watch_condition self.watch_nodes = watch_nodes self.name = name def get_watch_condition_dict(self): return { "id": self.watch_condition.get("condition"), "params": [{ "name": param.get_parameter_name(), "value": param.value } for param in self.watch_condition.get("params")] } class _ConditionParameterValue: """Condition parameter data container""" def __init__(self, parameter, value): self.parameter = parameter self.value = value def get_parameter_name(self): return self.parameter.name def recommend_watchpoints(condition_mgr: ConditionMgr, graph_stream, condition_context): """ Recommend watchpoints. Args: condition_mgr (ConditionMgr): Condition manager instance. graph_stream (GraphHandler): Graph handler instance. condition_context (ConditionContext): Context for condition. Returns: list[WatchPointData], watch points to be created. """ watch_points = [] if not graph_stream.graph: logger.warning("Given graph is None.") return watch_points if not settings.ENABLE_RECOMMENDED_WATCHPOINTS: return watch_points # add weight watch points merged_info = get_basic_node_info(TargetTypeEnum.WEIGHT.value, graph_stream) _recommend_weight_initialization(merged_info, condition_mgr, watch_points, condition_context) _recommend_weight_change_too_large(merged_info, condition_mgr, watch_points, condition_context) # Because we cannot identify trainable weights currently, weight_no_change and weight_change_too_small will not be # recommended. trainable_weight_nodes = [] _recommend_weight_not_changed(condition_mgr, trainable_weight_nodes, watch_points, condition_context) _recommend_weight_change_too_small(condition_mgr, trainable_weight_nodes, watch_points, condition_context) # add gradient watch points merged_info = get_basic_node_info(TargetTypeEnum.GRADIENT.value, graph_stream) _recommend_gradient_vanishing(merged_info, condition_mgr, watch_points, condition_context) # add tensor watch points merged_info = get_basic_node_info(TargetTypeEnum.TENSOR.value, graph_stream) _recommend_operator_overflow(merged_info, condition_mgr, watch_points, condition_context) _recommend_tensor_overflow(merged_info, condition_mgr, watch_points, condition_context) _recommend_tensor_all_zero(merged_info, condition_mgr, watch_points, condition_context) # add activation watch points merged_info = get_basic_node_info(TargetTypeEnum.ACTIVATION.value, graph_stream, ActivationFuncEnum.TANH.value) _recommend_activation_range(merged_info, condition_mgr, watch_points, condition_context, ActivationFuncEnum.TANH.value) merged_info = get_basic_node_info(TargetTypeEnum.ACTIVATION.value, graph_stream, ActivationFuncEnum.SIGMOID.value) _recommend_activation_range(merged_info, condition_mgr, watch_points, condition_context, ActivationFuncEnum.SIGMOID.value) merged_info = get_basic_node_info(TargetTypeEnum.ACTIVATION.value, graph_stream, [ActivationFuncEnum.RELU.value, ActivationFuncEnum.RELUV2.value]) _recommend_activation_range(merged_info, condition_mgr, watch_points, condition_context, ActivationFuncEnum.RELU.value) return watch_points def _recommend_tensor_all_zero(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend tensor all zero watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.TENSOR_ALL_ZERO.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.TENSOR_ALL_ZERO.value) tensor_all_zero_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [_ConditionParameterValue( parameter=condition.get_parameter_definition("zero_percentage_ge"), value=100 # set default value to 100 )] }, watch_nodes=basic_info_nodes.copy(), name='recommend_tensor_all_zero_watchpoint' ) watch_points.append(tensor_all_zero_watchpoint) def _recommend_tensor_overflow(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend tensor general overflow watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.TENSOR_OVERFLOW.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.TENSOR_OVERFLOW.value) overflow_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [] }, watch_nodes=basic_info_nodes.copy(), name='recommend_tensor_overflow_watchpoint' ) watch_points.append(overflow_watchpoint) def _recommend_operator_overflow(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend tensor overflow watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.OPERATOR_OVERFLOW.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.OPERATOR_OVERFLOW.value) overflow_d_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [] }, watch_nodes=basic_info_nodes.copy(), name='recommend_operator_overflow_watchpoint' ) watch_points.append(overflow_d_watchpoint) def _recommend_gradient_vanishing(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend gradient vanishing watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.GRADIENT_VANISHING.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.GRADIENT_VANISHING.value) gradient_vanishing_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [_ConditionParameterValue( parameter=condition.get_parameter_definition("abs_mean_lt"), value=1e-9 # set default value to 1e-9 )] }, watch_nodes=basic_info_nodes.copy(), name='recommend_gradient_vanishing_watchpoint' ) watch_points.append(gradient_vanishing_watchpoint) def _recommend_weight_change_too_small(condition_mgr, trainable_weight_nodes, watch_points, condition_context): """Recommend weight change too small watchpoint.""" if not trainable_weight_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.WEIGHT_CHANGE_TOO_SMALL.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.WEIGHT_CHANGE_TOO_SMALL.value) weight_change_too_small_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [ _ConditionParameterValue( parameter=condition.get_parameter_definition("abs_mean_update_ratio_lt"), value=1.0e-4 # set default value to 1.0e-4 ), ] }, watch_nodes=trainable_weight_nodes, name='recommend_weight_change_too_small_watchpoint' ) watch_points.append(weight_change_too_small_watchpoint) def _recommend_weight_not_changed(condition_mgr, trainable_weight_nodes, watch_points, condition_context): """Recommend weight not changed watchpoint.""" if not trainable_weight_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.WEIGHT_NOT_CHANGED.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.WEIGHT_NOT_CHANGED.value) weight_no_change_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [ _ConditionParameterValue( parameter=condition.get_parameter_definition("rtol"), value=1.0e-5 # set default value to 1.0e-5 ), _ConditionParameterValue( parameter=condition.get_parameter_definition("atol"), value=1.0e-8 # set default value to 1.0e-8 ), ] }, watch_nodes=trainable_weight_nodes, name='recommend_weight_not_changed_watchpoint' ) watch_points.append(weight_no_change_watchpoint) def _recommend_weight_change_too_large(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend weight change too large watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.WEIGHT_CHANGE_TOO_LARGE.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.WEIGHT_CHANGE_TOO_LARGE.value) weight_initialization_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [_ConditionParameterValue( parameter=condition.get_parameter_definition("abs_mean_update_ratio_gt"), value=1 # set default value to 1 )] }, watch_nodes=basic_info_nodes.copy(), name='recommend_weight_change_too_large_watchpoint' ) watch_points.append(weight_initialization_watchpoint) def _recommend_weight_initialization(basic_info_nodes, condition_mgr, watch_points, condition_context): """Recommend weight initialization watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.WEIGHT_INITIALIZATION.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.WEIGHT_INITIALIZATION.value) weight_initialization_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": [_ConditionParameterValue( parameter=condition.get_parameter_definition("zero_percentage_ge"), value=100 # set default value to 100 )] }, watch_nodes=basic_info_nodes.copy(), name='recommend_weight_initialization_watchpoint' ) watch_points.append(weight_initialization_watchpoint) def _recommend_activation_range(basic_info_nodes, condition_mgr, watch_points, condition_context, activation_func): """Recommend activation range watchpoint.""" if not basic_info_nodes: return if not condition_mgr.has_condition(ConditionIdEnum.ACTIVATION_RANGE.value, condition_context): return condition = condition_mgr.get_condition(condition_id=ConditionIdEnum.ACTIVATION_RANGE.value) params = _get_recommend_activation_params(condition, activation_func) activation_range_watchpoint = _WatchPointData( watch_condition={ "condition": condition.id, "params": params }, watch_nodes=basic_info_nodes.copy(), name='recommend_{}_activation_range_watchpoint'.format(activation_func.lower()) ) watch_points.append(activation_range_watchpoint) def get_basic_node_info(node_category, graph_stream, activation_func=None): """Get node merged info.""" basic_info_nodes = _get_basic_node_info_by_node_category(node_category, graph_stream, activation_func) merged_info = _merge_nodes(basic_info_nodes, graph_stream.whole_graph) merged_info = _add_graph_name(merged_info, graph_stream) return merged_info def _get_basic_node_info_by_node_category(node_category, graph_stream, activation_func=None): """Get node basic info by node category.""" pattern = {'node_category': node_category} if activation_func: pattern['condition'] = {'activation_func': activation_func} all_graph_nodes = graph_stream.search_in_graph(pattern) return all_graph_nodes def _convert_tree_to_node_list(node_tree, node_list): """Convert WatchNodeTree to Node list.""" if node_tree.watch_status in [WatchNodeTree.NOT_WATCH, WatchNodeTree.INVALID]: logger.debug("The watch_status of node: %s is not_watch or invalid.", node_tree.node_name) return if node_tree.watch_status == WatchNodeTree.TOTAL_WATCH: node_basic_info = NodeBasicInfo(name=node_tree.node_name, full_name=node_tree.full_name, type=node_tree.node_type) node_list.append(node_basic_info) return if node_tree.watch_status == WatchNodeTree.PARTIAL_WATCH: for _, sub_tree in node_tree.get_children(): _convert_tree_to_node_list(sub_tree, node_list) def _update_watch_status(node_tree, graph): """Update the watch_status, if all sub_nodes of a WatchNodeTree are total_watch, then the WatchNodeTree is changed to total_watch status.""" tmp_node_queue = Queue.Queue() tmp_node_queue.put(node_tree) # watch node list in layer order watch_tree_list = [] while not tmp_node_queue.empty(): cur_tree = tmp_node_queue.get() watch_tree_list.append(cur_tree) for _, sub_tree in cur_tree.get_children(): tmp_node_queue.put(sub_tree) # update the watch_status from bottom to top while watch_tree_list: cur_tree = watch_tree_list.pop() node_name = cur_tree.node_name logger.debug("Update status of node: %s.", node_name) # if node_name is "", it is the root node, which is not in normal_node_map if not node_name: continue sub_count = graph.normal_node_map.get(node_name).subnode_count # if the children_count of WatchNodeTree is less than the responding subnode_count in the graph, # its watch_status must be partial_watch if cur_tree.get_children_count() < sub_count: continue is_all_chosen = True for _, sub_tree in cur_tree.get_children(): if sub_tree.watch_status != WatchNodeTree.TOTAL_WATCH: is_all_chosen = False break if is_all_chosen: cur_tree.watch_status = WatchNodeTree.TOTAL_WATCH def _merge_nodes(leaf_nodes, graph): """Merge nodes in one graph.""" watch_node_tree = WatchNodeTree() for node in leaf_nodes: watch_node_tree.add_node(node.name, node.type, node.full_name) _update_watch_status(watch_node_tree, graph) out_nodes = [] _convert_tree_to_node_list(watch_node_tree, out_nodes) logger.debug("out_nodes: %s", out_nodes) return out_nodes def _add_graph_name(nodes, graph_stream): """Add graph_name in node.name.""" if len(graph_stream.graph) > 1: return nodes graph_name = graph_stream.graph_names[0] output_nodes = [] for node in nodes: node_basic_info = graph_stream.construct_node_basic_info( full_name=node.full_name, graph_name=graph_name, node_name=node.name, node_type=node.type) output_nodes.append(node_basic_info) return output_nodes def _sigmoid(value): """Calculate the sigmoid of value.""" return 1.0 / (1.0 + math.exp(-value)) def _get_recommend_activation_params(condition, activation_func): """Get recommend params for tanh, sigmoid and relu activation function.""" params = [] if activation_func == ActivationFuncEnum.TANH.value: # The recommend params for Tanh: The percentage of value in range (tanh(-8.8), tanh(8.8)) is lower than 0.1% params = [ _ConditionParameterValue( parameter=condition.get_parameter_definition("range_percentage_lt"), value=0.1 ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_start_inclusive"), value=math.tanh(-8.8) ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_end_inclusive"), value=math.tanh(8.8) )] if activation_func == ActivationFuncEnum.SIGMOID.value: # The recommend params for Sigmoid: # The percentage of value in range (sigmoid(-16.2)), sigmoid(16.2)) is lower than 0.1% params = [ _ConditionParameterValue( parameter=condition.get_parameter_definition("range_percentage_lt"), value=0.1 ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_start_inclusive"), value=_sigmoid(-16.2) ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_end_inclusive"), value=_sigmoid(16.2) )] if activation_func == ActivationFuncEnum.RELU.value: # The recommend params for ReLU: # The percentage of value in range (-1, 0) is greater than 99.9% params = [ _ConditionParameterValue( parameter=condition.get_parameter_definition("range_percentage_gt"), value=99.9 ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_start_inclusive"), value=-1 ), _ConditionParameterValue( parameter=condition.get_parameter_definition("range_end_inclusive"), value=0 )] return params