| @@ -17,7 +17,6 @@ import numpy as np | |||||
| from mindinsight.datavisual.common.log import logger | from mindinsight.datavisual.common.log import logger | ||||
| from mindinsight.datavisual.data_transform.histogram import Histogram, Bucket | from mindinsight.datavisual.data_transform.histogram import Histogram, Bucket | ||||
| from mindinsight.datavisual.proto_files import mindinsight_anf_ir_pb2 as anf_ir_pb2 | |||||
| from mindinsight.datavisual.utils.utils import calc_histogram_bins | from mindinsight.datavisual.utils.utils import calc_histogram_bins | ||||
| from mindinsight.utils.exceptions import ParamValueError | from mindinsight.utils.exceptions import ParamValueError | ||||
| @@ -192,10 +191,8 @@ class TensorContainer: | |||||
| self._stats = get_statistics_from_tensor(self._np_array) | self._stats = get_statistics_from_tensor(self._np_array) | ||||
| original_buckets = calc_original_buckets(self._np_array, self._stats) | original_buckets = calc_original_buckets(self._np_array, self._stats) | ||||
| self._count = sum(bucket.count for bucket in original_buckets) | self._count = sum(bucket.count for bucket in original_buckets) | ||||
| # convert the type of max and min value to np.float64 so that it cannot overflow | |||||
| # when calculating width of histogram. | |||||
| self._max = np.float64(self._stats.max) | |||||
| self._min = np.float64(self._stats.min) | |||||
| self._max = self._stats.max | |||||
| self._min = self._stats.min | |||||
| self._histogram = Histogram(tuple(original_buckets), self._max, self._min, self._count) | self._histogram = Histogram(tuple(original_buckets), self._max, self._min, self._count) | ||||
| @property | @property | ||||
| @@ -257,9 +254,4 @@ class TensorContainer: | |||||
| Returns: | Returns: | ||||
| numpy.ndarray, ndarray of tensor. | numpy.ndarray, ndarray of tensor. | ||||
| """ | """ | ||||
| data_type_str = anf_ir_pb2.DataType.Name(self.data_type) | |||||
| if data_type_str == 'DT_FLOAT16': | |||||
| return np.array(tuple(tensor), dtype=np.float16).reshape(self.dims) | |||||
| if data_type_str == 'DT_FLOAT32': | |||||
| return np.array(tuple(tensor), dtype=np.float32).reshape(self.dims) | |||||
| return np.array(tuple(tensor)).reshape(self.dims) | return np.array(tuple(tensor)).reshape(self.dims) | ||||