|
|
|
@@ -14,8 +14,11 @@ |
|
|
|
# ============================================================================ |
|
|
|
"""Test the model module.""" |
|
|
|
import numpy as np |
|
|
|
import pandas as pd |
|
|
|
import pytest |
|
|
|
|
|
|
|
from mindinsight.optimizer.common.exceptions import SamplesNotEnoughError, CorrelationNanError |
|
|
|
from mindinsight.optimizer.utils.importances import calc_hyper_param_importance |
|
|
|
from mindinsight.optimizer.utils.utils import is_simple_numpy_number, calc_histogram |
|
|
|
|
|
|
|
|
|
|
|
@@ -33,3 +36,26 @@ def test_calc_histogram(): |
|
|
|
assert output[0][1] == pytest.approx(0.6, 1e-6) |
|
|
|
assert output[1][1] == pytest.approx(0.6, 1e-6) |
|
|
|
assert output[0][2] == pytest.approx(2.0, 1e-6) |
|
|
|
|
|
|
|
|
|
|
|
def test_calc_hyper_param_importance_exception_1(): |
|
|
|
"""Test calc_hyper_param_importance function when number of samples is less or equal than 2""" |
|
|
|
flattened_lineage = {'epoch': [10, 10], 'accuracy': [32, 32]} |
|
|
|
with pytest.raises(SamplesNotEnoughError) as info: |
|
|
|
calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') |
|
|
|
assert "Number of samples is less or equal than 2." in str(info.value) |
|
|
|
|
|
|
|
|
|
|
|
def test_calc_hyper_param_importance_exception_2(): |
|
|
|
"""Test calc_hyper_param_importance function when correlation equals to NaN""" |
|
|
|
flattened_lineage = {'epoch': [10, 10, 10], 'accuracy': [0.6432, 0.6281, 0.6692]} |
|
|
|
with pytest.raises(CorrelationNanError) as info: |
|
|
|
calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') |
|
|
|
assert "Correlation is nan!" in str(info.value) |
|
|
|
|
|
|
|
|
|
|
|
def test_calc_hyper_param_importance(): |
|
|
|
"""Test calc_hyper_param_importance function""" |
|
|
|
flattened_lineage = {'epoch': [10, 20, 30], 'accuracy': [30, 40, 50]} |
|
|
|
result = calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy') |
|
|
|
assert result == pytest.approx(1.0, 1e-6) |