| @@ -60,7 +60,7 @@ bool CheckShape(Format format, const ShapeVector &shape) { | |||
| default: | |||
| std::string error = "Trans format between " + FmtToStr(TypeUtils::FormatToSerialString(format)) + | |||
| " and FORMAT_FRACTAL_NZ is not supported."; | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_FORMAT_INVALID, error.c_str()); | |||
| return false; | |||
| } | |||
| } | |||
| @@ -59,7 +59,7 @@ bool CheckShape(Format format, const ShapeVector &shape) { | |||
| default: | |||
| std::string error = "Trans format between " + FmtToStr(TypeUtils::FormatToSerialString(format)) + | |||
| " and FORMAT_FRACTAL_ZZ is not supported."; | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_FORMAT_INVALID, error.c_str()); | |||
| return false; | |||
| } | |||
| } | |||
| @@ -92,7 +92,8 @@ Status CheckArgsForNhwcToNc1hwc0(const TransArgs &args) { | |||
| Status GetDstDataAfterTrans(const TransArgs &args, TransResult &result, const int size, const int64_t total_size) { | |||
| std::shared_ptr<uint8_t> dst(new (std::nothrow) uint8_t[total_size], std::default_delete<uint8_t[]>()); | |||
| if (dst == nullptr) { | |||
| GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Failed to trans format from %s to %s, can not alloc the memory for dst buf %ld, shape %s", | |||
| GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, | |||
| "Failed to trans format from %s to %s, can not alloc the memory for dst buf %ld, shape %s", | |||
| TypeUtils::FormatToSerialString(args.src_format).c_str(), | |||
| TypeUtils::FormatToSerialString(args.dst_format).c_str(), total_size, ShapeToString(args.dst_shape).c_str()); | |||
| return ACL_ERROR_GE_MEMORY_ALLOCATION; | |||
| @@ -50,21 +50,21 @@ std::map<Format, std::map<Format, std::vector<int64_t>>> perm_args{ | |||
| bool IsShapeArgValid(const std::vector<int64_t> &src_shape, const std::vector<int64_t> &perm_arg) { | |||
| if (src_shape.empty()) { | |||
| std::string error = "Failed to transpose, empty src shape"; | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GELOGE(PARAM_INVALID, "Failed to transpose, empty src shape"); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_SHAPE_INVALID, error.c_str()); | |||
| GELOGE(ACL_ERROR_GE_SHAPE_INVALID, "Failed to transpose, empty src shape"); | |||
| return false; | |||
| } | |||
| for (auto dim : src_shape) { | |||
| if (dim < 0) { | |||
| std::string error = "Failed to transpose, negative dim in src shape " + FmtToStr(ShapeToString(src_shape)); | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_SHAPE_INVALID, error.c_str()); | |||
| return false; | |||
| } | |||
| } | |||
| if (perm_arg.size() != src_shape.size()) { | |||
| std::string error = "Failed to transpose, the size of src shape" + FmtToStr(src_shape.size()) + | |||
| " and perm arg" + FmtToStr(perm_arg.size()) + " are different"; | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_SHAPE_INVALID, error.c_str()); | |||
| return false; | |||
| } | |||
| @@ -73,7 +73,7 @@ bool IsShapeArgValid(const std::vector<int64_t> &src_shape, const std::vector<in | |||
| if (perm < 0 || static_cast<size_t>(perm) >= perm_arg.size() || ++exists[perm] > 1) { | |||
| std::string error = "Failed to transpose, duplicated perm arg " + FmtToStr(perm) + | |||
| ", perm arg " + FmtToStr(JoinToString(perm_arg)); | |||
| GE_ERRORLOG_AND_ERRORMSG(PARAM_INVALID, error.c_str()); | |||
| GE_ERRORLOG_AND_ERRORMSG(ACL_ERROR_GE_PARAM_INVALID, error.c_str()); | |||
| return false; | |||
| } | |||
| } | |||
| @@ -82,11 +82,11 @@ bool IsShapeArgValid(const std::vector<int64_t> &src_shape, const std::vector<in | |||
| bool IsTransposeArgValid(const uint8_t *src, const std::vector<int64_t> &src_shape, DataType src_data_type, | |||
| const std::vector<int64_t> &perm_arg) { | |||
| if (src == nullptr) { | |||
| GELOGE(PARAM_INVALID, "Failed to transpose, the src is null"); | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Failed to transpose, the src is null"); | |||
| return false; | |||
| } | |||
| if (GetSizeByDataType(src_data_type) < 0) { | |||
| GELOGE(UNSUPPORTED, "Failed to transpose, the data type %s is not support", | |||
| GELOGE(ACL_ERROR_GE_DATATYPE_INVALID, "Failed to transpose, the data type %s is not support", | |||
| TypeUtils::DataTypeToSerialString(src_data_type).c_str()); | |||
| return false; | |||
| } | |||
| @@ -36,6 +36,7 @@ | |||
| #include "graph/utils/type_utils.h" | |||
| #include "init/gelib.h" | |||
| #include "model/ge_model.h" | |||
| #include "analyzer/analyzer.h" | |||
| using std::map; | |||
| using std::string; | |||
| @@ -1007,13 +1008,13 @@ Status GeGenerator::Impl::BuildModel(const Graph &graph, const vector<GeTensor> | |||
| ErrorManager::GetInstance().SetStage(ErrorMessage::kModelCompile, ErrorMessage::kOther); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(GE_GENERATOR_GRAPH_MANAGER_BUILD_GRAPH_FAILED, "GraphManager build graph fail, graph id: %u", graph_id); | |||
| VarManagerPool::Instance().RemoveVarManager(session_id); | |||
| return GE_GENERATOR_GRAPH_MANAGER_BUILD_GRAPH_FAILED; | |||
| ret = GE_GENERATOR_GRAPH_MANAGER_BUILD_GRAPH_FAILED; | |||
| } | |||
| RtContextUtil::GetInstance().DestroyRtContexts(session_id); | |||
| Analyzer::GetInstance()->DestroySessionJsonObject(session_id); | |||
| VarManagerPool::Instance().RemoveVarManager(session_id); | |||
| return SUCCESS; | |||
| return ret; | |||
| } | |||
| Status GeGenerator::Impl::GenerateInfershapeGraph(const Graph &graph) { | |||
| @@ -1735,7 +1735,7 @@ Status BlockMemAssigner::AssignOutputMemoryWithReuse(const NodePtr &node, vector | |||
| /// | |||
| void BlockMemAssigner::AssignMemoryWithReuse(vector<int64_t> &ranges) { | |||
| (void)ge::GetContext().GetOption(OPTION_EXEC_DISABLE_REUSED_MEMORY, ge_disable_reuse_mem_env_); | |||
| GELOGD("Reuse memory %s", ge_disable_reuse_mem_env_ == "1" ? "close" : "open"); | |||
| GEEVENT("Reuse memory %s", ge_disable_reuse_mem_env_ == "1" ? "close" : "open"); | |||
| string op_no_reuse_mem_str; | |||
| const char *op_no_reuse_mem = std::getenv(OP_NO_REUSE_MEM); | |||
| GE_IF_BOOL_EXEC(op_no_reuse_mem != nullptr, op_no_reuse_mem_str = string(op_no_reuse_mem); | |||
| @@ -2125,7 +2125,7 @@ void SetBlockOpMemOffset(MemoryBlock *block, int32_t child_block_level) { | |||
| child_block_level++; | |||
| for (MemoryBlock *child_block : block->ChildBlockList()) { | |||
| SetBlockOpMemOffset(child_block, child_block_level); | |||
| SetBlockOpMemOffset(child_block, child_block_level); | |||
| } | |||
| } | |||
| @@ -311,6 +311,7 @@ Status VarMemAssignUtil::SetOutTransNodeToAssign(const ge::NodePtr &node, const | |||
| } | |||
| Status VarMemAssignUtil::AssignMemory2HasRefAttrNode(ge::ComputeGraphPtr &compute_graph) { | |||
| GraphToNodeMap graph_to_node; | |||
| for (const ge::NodePtr &n : compute_graph->GetAllNodes()) { | |||
| string ref_var_src_var_name; | |||
| auto op_desc = n->GetOpDesc(); | |||
| @@ -318,7 +319,8 @@ Status VarMemAssignUtil::AssignMemory2HasRefAttrNode(ge::ComputeGraphPtr &comput | |||
| for (uint32_t idx = 0; idx < op_desc->GetOutputsSize(); idx += 1) { | |||
| const auto out_desc = op_desc->MutableOutputDesc(idx); | |||
| if (ge::AttrUtils::GetStr(out_desc, REF_VAR_SRC_VAR_NAME, ref_var_src_var_name)) { | |||
| GE_CHK_STATUS_RET(AssignData2VarRef(n, ref_var_src_var_name, compute_graph->GetSessionID(), idx)); | |||
| GE_CHK_STATUS_RET( | |||
| AssignData2VarRef(n, ref_var_src_var_name, compute_graph->GetSessionID(), idx, graph_to_node)); | |||
| } | |||
| } | |||
| } | |||
| @@ -326,16 +328,37 @@ Status VarMemAssignUtil::AssignMemory2HasRefAttrNode(ge::ComputeGraphPtr &comput | |||
| } | |||
| Status VarMemAssignUtil::AssignData2VarRef(const ge::NodePtr &has_ref_attr_node, const string &src_var_name, | |||
| uint64_t session_id, uint32_t out_index) { | |||
| uint64_t session_id, uint32_t out_index, | |||
| GraphToNodeMap &graph_to_node) { | |||
| // Get ref_var_src_var address | |||
| auto root_graph = GraphUtils::FindRootGraph(has_ref_attr_node->GetOwnerComputeGraph()); | |||
| GE_CHECK_NOTNULL(root_graph); | |||
| ge::NodePtr var_ref_src_var = root_graph->FindNode(src_var_name); | |||
| if (var_ref_src_var == nullptr) { | |||
| // Cache mapping (name to nodeptr) simproves query performance | |||
| auto &name_to_node = graph_to_node[root_graph]; | |||
| if (name_to_node.empty()) { | |||
| for (const ge::NodePtr &n : root_graph->GetDirectNode()) { | |||
| name_to_node.emplace(n->GetName(), n); | |||
| } | |||
| for (auto sub_graph : root_graph->GetAllSubgraphs()) { | |||
| auto &name_to_node_sub = graph_to_node[sub_graph]; | |||
| if (name_to_node_sub.empty()) { | |||
| for (const ge::NodePtr &n : sub_graph->GetDirectNode()) { | |||
| name_to_node_sub.emplace(n->GetName(), n); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| ge::NodePtr var_ref_src_var = nullptr; | |||
| auto it = name_to_node.find(src_var_name); | |||
| if ((it != name_to_node.end()) && (it->second != nullptr)) { | |||
| var_ref_src_var = it->second; | |||
| } else { | |||
| for (auto sub_graph : root_graph->GetAllSubgraphs()) { | |||
| auto node_ptr = sub_graph->FindNode(src_var_name); | |||
| if (node_ptr != nullptr) { | |||
| var_ref_src_var = node_ptr; | |||
| auto &name_to_node_sub = graph_to_node[sub_graph]; | |||
| it = name_to_node_sub.find(src_var_name); | |||
| if ((it != name_to_node_sub.end()) && (it->second != nullptr)) { | |||
| var_ref_src_var = it->second; | |||
| break; | |||
| } | |||
| } | |||
| @@ -22,6 +22,8 @@ | |||
| #include "graph/utils/node_utils.h" | |||
| namespace ge { | |||
| using GraphToNodeMap = std::map<ge::ComputeGraphPtr, std::map<std::string, ge::NodePtr>>; | |||
| class VarMemAssignUtil { | |||
| public: | |||
| static Status AssignVarMemory(ge::ComputeGraphPtr &compute_graph); | |||
| @@ -47,7 +49,7 @@ class VarMemAssignUtil { | |||
| static Status DealTransNode(const ge::NodePtr &final_trans_node); | |||
| static Status DealExportTransNode(const ge::NodePtr &node, const ge::NodePtr &final_trans_node); | |||
| static Status AssignData2VarRef(const ge::NodePtr &variable_ref, const std::string &src_var_name, uint64_t session_id, | |||
| uint32_t out_index); | |||
| uint32_t out_index, GraphToNodeMap &graph_to_node); | |||
| static Status SetOutTransNodeToAssign(const ge::NodePtr &node, const ge::NodePtr &final_trans_node, size_t index); | |||
| }; | |||
| @@ -2137,7 +2137,6 @@ Status DavinciModel::CopyInputData(const InputData &input_data, bool device_data | |||
| Status DavinciModel::SyncVarData() { | |||
| GELOGI("Sync var data, model id:%u", model_id_); | |||
| Status ret = SUCCESS; | |||
| if (global_step_addr_ != nullptr && global_step_size_ != 0) { | |||
| const vector<uint64_t> v_step = { iterator_count_ }; | |||
| @@ -2145,7 +2144,7 @@ Status DavinciModel::SyncVarData() { | |||
| RT_MEMCPY_HOST_TO_DEVICE)); | |||
| } | |||
| return ret; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::InitModelProfile() { | |||
| @@ -3262,11 +3261,9 @@ Status DavinciModel::CopyModelData(const InputData &input_data, OutputData &outp | |||
| /// | |||
| Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &data_info, bool is_input, | |||
| const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label) { | |||
| string input_or_output; | |||
| is_input ? input_or_output = "input" : input_or_output = "output"; | |||
| if (blobs.size() != data_info.size()) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Verify %s data num failed: model requires %zu, but user actually feeds %zu", | |||
| input_or_output.c_str(), data_info.size(), blobs.size()); | |||
| is_input ? "input" : "output", data_info.size(), blobs.size()); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| @@ -3274,7 +3271,7 @@ Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> & | |||
| if (data.first >= blobs.size()) { // check data index. | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, | |||
| "Verify %s data num failed: can not find No.%u data, because user only feeds %zu", | |||
| input_or_output.c_str(), data.first, blobs.size()); | |||
| is_input ? "input" : "output", data.first, blobs.size()); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| @@ -3306,21 +3303,20 @@ Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> & | |||
| } | |||
| for (size_t count = 0; count < data.second.GetDataCount(); ++count) { | |||
| int64_t size = data.second.GetDataInfo().at(count).first; | |||
| void *addr = data.second.GetDataInfo().at(count).second; | |||
| void *buffer_addr = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(buffer.data) + | |||
| data.second.GetRelativeOffset().at(count)); | |||
| GELOGI("[ZCPY] Copy %s blobs_index %u, virtual_addr: %p, size: %ld, user_data_addr: %p, batch_label: %s", | |||
| input_or_output.c_str(), data.first, addr, size, buffer_addr, batch_label.c_str()); | |||
| is_input ? "input" : "output", data.first, addr, data.second.GetDataInfo().at(count).first, | |||
| buffer_addr, batch_label.c_str()); | |||
| // For input data, just copy for rts task. | |||
| for (ZeroCopyTask &task : zero_copy_tasks_) { | |||
| if (task.GetBatchLabel() != kDefaultBatchLable && task.GetBatchLabel() != batch_label) { | |||
| for (auto &task : zero_copy_tasks_) { | |||
| bool not_same_batch = (task.GetBatchLabel() != kDefaultBatchLable && task.GetBatchLabel() != batch_label); | |||
| if (not_same_batch) { | |||
| continue; | |||
| } | |||
| uintptr_t addr_val = reinterpret_cast<uintptr_t>(addr); | |||
| if (task.UpdateTaskParam(addr_val, buffer_addr) != SUCCESS) { | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| (void)task.UpdateTaskParam(addr_val, buffer_addr); | |||
| } | |||
| } | |||
| } | |||
| @@ -3980,7 +3976,7 @@ Status DavinciModel::InitOrigInputInfo(uint32_t index, const OpDescPtr &op_desc) | |||
| Status DavinciModel::GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) const { | |||
| const auto it = orig_input_info_.find(index); | |||
| if (it == orig_input_info_.end()) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "there is not AIPP related with index %u.", index); | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "There is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| } | |||
| @@ -4014,7 +4010,7 @@ void DavinciModel::ParseAIPPInfo(std::string in_out_info, InputOutputDims &dims_ | |||
| Status DavinciModel::InitAippInputOutputDims(uint32_t index, const OpDescPtr &op_desc) { | |||
| if (!op_desc->HasAttr(ATTR_NAME_AIPP_INPUTS) || !op_desc->HasAttr(ATTR_NAME_AIPP_OUTPUTS)) { | |||
| GELOGI("there is not AIPP related with index %u.", index); | |||
| GELOGI("There is not AIPP related with index %u.", index); | |||
| return SUCCESS; | |||
| } | |||
| @@ -4031,7 +4027,7 @@ Status DavinciModel::InitAippInputOutputDims(uint32_t index, const OpDescPtr &op | |||
| ConstGeTensorDescPtr data_input_desc = op_desc->GetInputDescPtr(kDataIndex); | |||
| int64_t data_input_size; | |||
| (void)TensorUtils::GetSize(*(op_desc->GetInputDescPtr(kDataIndex)), data_input_size); | |||
| GELOGD("related Data[%d]: tensor_name: %s, dim_num: %zu, tensor_size: %zu, format: %s, data_type: %s, shape: %s.", | |||
| GELOGD("Related Data[%d]: tensor_name: %s, dim_num: %zu, tensor_size: %zu, format: %s, data_type: %s, shape: %s.", | |||
| index, op_desc->GetName().c_str(), data_input_desc->GetShape().GetDimNum(), data_input_size, | |||
| TypeUtils::FormatToSerialString(data_input_desc->GetFormat()).c_str(), | |||
| TypeUtils::DataTypeToSerialString(data_input_desc->GetDataType()).c_str(), | |||
| @@ -4058,7 +4054,7 @@ Status DavinciModel::GetAllAippInputOutputDims(uint32_t index, vector<InputOutpu | |||
| vector<InputOutputDims> &output_dims) const { | |||
| const auto it = aipp_dims_info_.find(index); | |||
| if (it == aipp_dims_info_.end()) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "there is not AIPP related with index %u.", index); | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "There is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| } | |||
| @@ -356,6 +356,14 @@ void CachingAllocator::FreeBlocks() { | |||
| (void) FreeCachedBlocks(); | |||
| } | |||
| void CachingAllocator::TryFreeBlocks() { | |||
| GELOGI("Try free blocks."); | |||
| std::lock_guard<std::recursive_mutex> lock(mutex_); | |||
| if (allocated_blocks_.empty()) { | |||
| (void) FreeCachedBlocks(); | |||
| } | |||
| } | |||
| void CachingAllocator::FreeBlockBins() { | |||
| GELOGI("Free block bins."); | |||
| std::lock_guard<std::recursive_mutex> lock(mutex_); | |||
| @@ -94,6 +94,13 @@ class CachingAllocator { | |||
| /// | |||
| Status Free(uint8_t *memory_addr, uint32_t device_id = 0); | |||
| /// | |||
| /// @ingroup ge_graph | |||
| /// @brief try to free memory when no memory is referenced | |||
| /// @return void | |||
| /// | |||
| void TryFreeBlocks(); | |||
| private: | |||
| /// | |||
| @@ -136,12 +136,12 @@ Status HybridModelBuilder::Build() { | |||
| GE_CHK_STATUS_RET(RecoverGraphUnknownFlag(), "[%s] Failed to RecoverGraphUnknownFlag", GetGraphName()); | |||
| GE_CHK_STATUS_RET(IndexSpecialNodes(), "[%s] Failed to index nodes", GetGraphName()); | |||
| GE_CHK_STATUS_RET(IndexTaskDefs(), "[%s] Failed to index task defs", GetGraphName()); | |||
| GE_CHK_STATUS_RET(InitWeights(), "[%s] Failed to init weights", GetGraphName()); | |||
| GE_CHK_STATUS_RET(LoadGraph(), "[%s] Failed to load graph", GetGraphName()); | |||
| GE_CHK_STATUS_RET(AssignUninitializedConstantOps(), "[%s] Failed to assign uninitialized constants", GetGraphName()); | |||
| GE_CHK_STATUS_RET(TransAllVarData(), "[%s] Failed to trans all var data", GetGraphName()); | |||
| GE_CHK_STATUS_RET(CopyVarData(), "[%s] Failed to copy var data", GetGraphName()); | |||
| GE_CHK_STATUS_RET(InitModelMem(), "[%s] Failed to init memory", GetGraphName()); | |||
| GE_CHK_STATUS_RET(InitWeights(), "[%s] Failed to init weights", GetGraphName()); | |||
| GE_CHK_STATUS_RET(InitConstantOps(), "[%s] Failed to init constant op", GetGraphName()); | |||
| GE_CHK_STATUS_RET(InitVariableTensors(), "[%s] Failed to init variables", GetGraphName()); | |||
| GE_CHK_STATUS_RET(LoadTasks(), "[%s] Failed to load tasks", GetGraphName()); | |||
| @@ -599,9 +599,9 @@ Status HybridModelBuilder::MergeNetOutputNode(ComputeGraph &graph) { | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGraphPtr &merged_graph) { | |||
| Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraphPtr &root_graph, ComputeGraphPtr &merged_graph) { | |||
| merged_graph = MakeShared<ComputeGraph>("MergedGraph"); | |||
| for (const auto &node : root_graph.GetDirectNode()) { | |||
| for (const auto &node : root_graph->GetDirectNode()) { | |||
| GE_CHECK_NOTNULL(node); | |||
| auto op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| @@ -631,7 +631,7 @@ Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGrap | |||
| } | |||
| } | |||
| } | |||
| GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraph(root_graph, *merged_graph, *subgraph), | |||
| GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraph(root_graph, merged_graph, *subgraph), | |||
| "[%s] Failed to merge subgraph.", | |||
| subgraph->GetName().c_str()); | |||
| } | |||
| @@ -647,18 +647,19 @@ Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGrap | |||
| return a_level < b_level; | |||
| }); | |||
| for (auto &remained_subgraph : root_graph.GetAllSubgraphs()) { | |||
| for (auto &remained_subgraph : root_graph->GetAllSubgraphs()) { | |||
| GELOGD("Adding subgraph [%s] to merged-graph.", remained_subgraph->GetName().c_str()); | |||
| GE_CHK_GRAPH_STATUS_RET(merged_graph->AddSubgraph(remained_subgraph), | |||
| "Failed to add subgraph [%s]", | |||
| remained_subgraph->GetName().c_str()); | |||
| remained_subgraph->SetParentGraph(merged_graph); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::UnfoldSubgraph(ComputeGraph &root_graph, | |||
| ComputeGraph &parent_graph, | |||
| Status HybridModelBuilder::UnfoldSubgraph(ComputeGraphPtr &root_graph, | |||
| ComputeGraphPtr &parent_graph, | |||
| ComputeGraph &sub_graph) { | |||
| auto parent_node = sub_graph.GetParentNode(); | |||
| GE_CHECK_NOTNULL(parent_node); | |||
| @@ -687,15 +688,23 @@ Status HybridModelBuilder::UnfoldSubgraph(ComputeGraph &root_graph, | |||
| } | |||
| } | |||
| parent_graph.AddNode(sub_node); | |||
| if (!sub_node->GetOpDesc()->GetSubgraphInstanceNames().empty()) { | |||
| for (size_t i = 0; i < sub_node->GetOpDesc()->GetSubgraphInstanceNames().size(); ++i) { | |||
| auto sub_sub_graph = NodeUtils::GetSubgraph(*sub_node, i); | |||
| GE_CHECK_NOTNULL(sub_sub_graph); | |||
| sub_sub_graph->SetParentGraph(parent_graph); | |||
| } | |||
| } | |||
| parent_graph->AddNode(sub_node); | |||
| GELOGD("[%s::%s] added to parent graph: [%s].", | |||
| sub_graph.GetName().c_str(), | |||
| sub_node->GetName().c_str(), | |||
| parent_graph.GetName().c_str()); | |||
| parent_graph->GetName().c_str()); | |||
| sub_node->SetOwnerComputeGraph(parent_graph); | |||
| } | |||
| GELOGD("[%s] Done merging subgraph. remove it from root graph.", sub_graph.GetName().c_str()); | |||
| root_graph.RemoveSubgraph(sub_graph.GetName()); | |||
| root_graph->RemoveSubgraph(sub_graph.GetName()); | |||
| return SUCCESS; | |||
| } | |||
| @@ -747,7 +756,7 @@ Status HybridModelBuilder::LoadGraph() { | |||
| GELOGI("Before merging subgraphs DirectNodesSize = %zu, GetAllNodesSize = %zu", | |||
| root_graph->GetDirectNodesSize(), | |||
| root_graph->GetAllNodesSize()); | |||
| GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraphs(*root_graph, merged_graph), "Failed to unfold subgraphs."); | |||
| GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraphs(root_graph, merged_graph), "Failed to unfold subgraphs."); | |||
| root_graph = std::move(merged_graph); | |||
| GELOGI("After merging subgraphs DirectNodesSize = %zu, GetAllNodesSize = %zu", | |||
| root_graph->GetDirectNodesSize(), | |||
| @@ -1030,8 +1039,8 @@ Status HybridModelBuilder::InitWeights() { | |||
| GELOGI("Init weight mem successfully, weight base %p, weight size = %zu", | |||
| weight_base, | |||
| sub_weight_buffer->GetSize()); | |||
| auto root_graph = GraphUtils::GetComputeGraph(subgraph_model.second->GetGraph()); | |||
| hybrid_model_.weight_buffer_map_.emplace(root_graph->GetName(),std::move(sub_weight_buffer)); | |||
| auto root_graph = ge_root_model_->GetRootGraph()->GetSubgraph(subgraph_model.first); | |||
| hybrid_model_.weight_buffer_map_.emplace(root_graph->GetName(), std::move(sub_weight_buffer)); | |||
| for (auto &node : root_graph->GetDirectNode()) { | |||
| if (node->GetType() != CONSTANT) { | |||
| continue; | |||
| @@ -47,8 +47,8 @@ class HybridModelBuilder { | |||
| static Status HandleDtString(const GeTensor &tensor, void *var_addr); | |||
| static Status MergeInputNodes(ComputeGraph &compute_graph); | |||
| static Status MergeNetOutputNode(ComputeGraph &compute_graph); | |||
| static Status UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGraphPtr &merged_graph); | |||
| static Status UnfoldSubgraph(ComputeGraph &root_graph, ComputeGraph &parent_graph, ComputeGraph &sub_graph); | |||
| static Status UnfoldSubgraphs(ComputeGraphPtr &root_graph, ComputeGraphPtr &merged_graph); | |||
| static Status UnfoldSubgraph(ComputeGraphPtr &root_graph, ComputeGraphPtr &parent_graph, ComputeGraph &sub_graph); | |||
| static Status BuildInputMapping(GraphItem &graph_item, | |||
| std::vector<NodeItem *> &data_nodes, | |||
| bool is_root_graph); | |||
| @@ -19,6 +19,9 @@ | |||
| #include <mutex> | |||
| #include <string> | |||
| #include "graph/manager/graph_mem_allocator.h" | |||
| #include "graph/manager/graph_caching_allocator.h" | |||
| namespace ge { | |||
| FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY SingleOpManager::~SingleOpManager() { | |||
| for (auto &it : stream_resources_) { | |||
| @@ -69,6 +72,7 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status SingleOpManager::Release | |||
| delete it->second; | |||
| it->second = nullptr; | |||
| (void)stream_resources_.erase(it); | |||
| MemManager::Instance().CachingInstance(RT_MEMORY_HBM).TryFreeBlocks(); | |||
| return SUCCESS; | |||
| } | |||
| @@ -1 +1 @@ | |||
| Subproject commit ccfccb4bb355425cc09594b8ea267fb8ca938138 | |||
| Subproject commit 7e90824d05f349c77b85c5d547b80f9f7e197e35 | |||
| @@ -1 +1 @@ | |||
| Subproject commit 0d4703aa893e90f23ba8a2dbd8903e028680213f | |||
| Subproject commit 0b1cd5d98d1f80c119c4aa251216d837f9f7c359 | |||
| @@ -4676,5 +4676,24 @@ TEST_F(UtestFormatTranspose, invalid_dst_format) { | |||
| EXPECT_EQ(transfer.TransShape(FORMAT_NCHW, src_shape, DT_FLOAT16, FORMAT_C1HWNC0, dst_shape), | |||
| ACL_ERROR_GE_FORMAT_INVALID); | |||
| } | |||
| TEST_F(UtestFormatTranspose, invalid_src_data) { | |||
| uint8_t *data = nullptr; | |||
| TransArgs args{data, FORMAT_NCHW, FORMAT_NHWC, std::vector<int64_t>({1, 3, 8, 8}), std::vector<int64_t>({1, 8, 8, 3}), DT_INT64}; | |||
| FormatTransferTranspose transpose; | |||
| TransResult result; | |||
| EXPECT_EQ(transpose.TransFormat(args, result), ACL_ERROR_GE_PARAM_INVALID); | |||
| uint16_t data1[3] = {14583, 12849, 14184}; | |||
| TransArgs args1{reinterpret_cast<uint8_t *>(data1), FORMAT_NCHW, FORMAT_NHWC, std::vector<int64_t>({-1, 3, 1, 1}), std::vector<int64_t>({1, 1, 1, 3}), DT_INT64}; | |||
| FormatTransferTranspose transpose1; | |||
| TransResult result1; | |||
| EXPECT_EQ(transpose1.TransFormat(args1, result1), ACL_ERROR_GE_SHAPE_INVALID); | |||
| TransArgs args2{reinterpret_cast<uint8_t *>(data1), FORMAT_NCHW, FORMAT_NHWC, std::vector<int64_t>({3, 1, 1}), std::vector<int64_t>({1, 1, 1, 3}), DT_INT64}; | |||
| FormatTransferTranspose transpose2; | |||
| TransResult result2; | |||
| EXPECT_EQ(transpose2.TransFormat(args2, result2), ACL_ERROR_GE_SHAPE_INVALID); | |||
| } | |||
| } // namespace formats | |||
| } // namespace ge | |||
| @@ -155,4 +155,17 @@ TEST_F(UtestGeGenerator, test_remove_const) { | |||
| vector<GeTensor> outputs; | |||
| generator.RemoveConst(inputs, outputs); | |||
| } | |||
| TEST_F(UtestGeGenerator, test_generate_online_model) { | |||
| GeTensorDesc tensor_desc; | |||
| GeTensor tensor(tensor_desc); | |||
| const vector<GeTensor> inputs = { tensor, tensor }; | |||
| auto compute_graph = MakeGraph(); | |||
| compute_graph->TopologicalSorting(); | |||
| Graph graph = ge::GraphUtils::CreateGraphFromComputeGraph(compute_graph); | |||
| GeGenerator generator; | |||
| generator.Initialize({}); | |||
| std::string name; | |||
| EXPECT_NE(generator.GenerateOfflineModel(graph, name, inputs), SUCCESS); | |||
| } | |||
| } // namespace ge | |||
| @@ -33,6 +33,7 @@ | |||
| #include "graph/build/memory/graph_mem_assigner.h" | |||
| #include "graph/build/memory/hybrid_mem_assigner.h" | |||
| #include "graph/build/memory/max_block_mem_assigner.h" | |||
| #include "graph/manager/graph_var_manager.h" | |||
| #undef protected | |||
| #undef private | |||
| @@ -77,8 +78,8 @@ class UtestMemoryAssignerTest : public testing::Test { | |||
| op_def->SetWorkspaceBytes(workspace_bytes); | |||
| return op_def; | |||
| } | |||
| void MakeGraph(ge::ComputeGraphPtr &graph) { | |||
| ge::OpDescPtr op_def_a = CreateOpWithWsSize("A", 6000); | |||
| void MakeGraph(ge::ComputeGraphPtr &graph, const string &type = "some") { | |||
| ge::OpDescPtr op_def_a = CreateOpWithWsSize("A", 6000, type); | |||
| op_def_a->SetStreamId(0); | |||
| ge::OpDescPtr op_def_b = CreateOpWithWsSize("B", 120000); | |||
| op_def_b->SetStreamId(0); | |||
| @@ -263,3 +264,38 @@ TEST_F(UtestMemoryAssignerTest, graph_memory_set_last_used_attr) { | |||
| (void) ge::AttrUtils::GetInt(node_f->GetOpDesc()->GetInputDesc(0), ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE, flag); | |||
| EXPECT_EQ(flag, 1); | |||
| } | |||
| TEST_F(UtestMemoryAssignerTest, graph_memory_assign_ref_var) { | |||
| ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>(""); | |||
| MakeGraph(graph, VARIABLE); | |||
| auto node_a = graph->FindNode("A"); | |||
| auto node_b = graph->FindNode("B"); | |||
| std::string value = "A"; | |||
| (void) ge::AttrUtils::SetStr(node_b->GetOpDesc()->MutableOutputDesc(0), REF_VAR_SRC_VAR_NAME, value); | |||
| MemoryAssigner memory_assigner(graph); | |||
| map<int64_t, size_t> mem_offset; | |||
| size_t zero_memory_size = 0; | |||
| VarManager::Instance(0)->Init(0, 0, 0, 0); | |||
| EXPECT_EQ(memory_assigner.AssignMemory(false, mem_offset, zero_memory_size), GRAPH_SUCCESS); | |||
| EXPECT_EQ(node_b->GetOpDesc()->GetOutputOffset()[0], node_a->GetOpDesc()->GetOutputOffset()[0]); | |||
| } | |||
| TEST_F(UtestMemoryAssignerTest, graph_memory_assign_ref_var_not_found) { | |||
| ge::ComputeGraphPtr graph = make_shared<ge::ComputeGraph>(""); | |||
| MakeGraph(graph, VARIABLE); | |||
| ge::ComputeGraphPtr sub_graph = make_shared<ge::ComputeGraph>(""); | |||
| MakeReuseGraph(sub_graph); | |||
| graph->AddSubGraph(sub_graph); | |||
| auto node_a = graph->FindNode("A"); | |||
| auto node_b = graph->FindNode("B"); | |||
| std::string value = "M"; | |||
| (void) ge::AttrUtils::SetStr(node_b->GetOpDesc()->MutableOutputDesc(0), REF_VAR_SRC_VAR_NAME, value); | |||
| MemoryAssigner memory_assigner(graph); | |||
| map<int64_t, size_t> mem_offset; | |||
| size_t zero_memory_size = 0; | |||
| VarManager::Instance(0)->Init(0, 0, 0, 0); | |||
| EXPECT_NE(memory_assigner.AssignMemory(false, mem_offset, zero_memory_size), GRAPH_SUCCESS); | |||
| } | |||
| @@ -22,6 +22,7 @@ | |||
| #include "graph/utils/graph_utils.h" | |||
| #include "common/profiling/profiling_manager.h" | |||
| #include "graph/load/model_manager/davinci_model.h" | |||
| #include "graph/manager/graph_var_manager.h" | |||
| using namespace std; | |||
| @@ -51,6 +52,10 @@ int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) | |||
| TEST_F(UtestDavinciModel, init_success) { | |||
| DavinciModel model(0, nullptr); | |||
| VarManager::Instance(0)->Init(0, 0, 0, 0); | |||
| map<string, string> options; | |||
| options[GRAPH_MEMORY_MAX_SIZE] = "1048576"; | |||
| VarManager::Instance(0)->SetMemoryMallocSize(options); | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| ProfilingManager::Instance().is_load_profiling_ = true; | |||
| @@ -777,6 +782,10 @@ TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) { | |||
| // test label_set_task Init | |||
| TEST_F(UtestDavinciModel, label_task_success) { | |||
| VarManager::Instance(0)->Init(0, 0, 0, 0); | |||
| map<string, string> options; | |||
| options[GRAPH_MEMORY_MAX_SIZE] = "1048576"; | |||
| VarManager::Instance(0)->SetMemoryMallocSize(options); | |||
| DavinciModel model(0, nullptr); | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| @@ -944,6 +953,11 @@ TEST_F(UtestDavinciModel, simple_test_gmock) { | |||
| } | |||
| TEST_F(UtestDavinciModel, NnExecute) { | |||
| VarManager::Instance(0)->Init(0, 0, 0, 0); | |||
| map<string, string> options; | |||
| options[GRAPH_MEMORY_MAX_SIZE] = "1048576"; | |||
| VarManager::Instance(0)->SetMemoryMallocSize(options); | |||
| DavinciModel model(0, nullptr); | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| ProfilingManager::Instance().is_load_profiling_ = true; | |||
| @@ -967,6 +981,26 @@ TEST_F(UtestDavinciModel, NnExecute) { | |||
| NodePtr node = graph->AddNode(op_desc); // op_index = 0 | |||
| } | |||
| { | |||
| OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({5120}); | |||
| NodePtr node = graph->AddNode(op_desc); | |||
| domi::TaskDef *task_def = model_task_def->add_task(); | |||
| task_def->set_stream_id(0); | |||
| task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC); | |||
| domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async(); | |||
| memcpy_async->set_src(1024); | |||
| memcpy_async->set_dst(5120); | |||
| memcpy_async->set_dst_max(512); | |||
| memcpy_async->set_count(1); | |||
| memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE); | |||
| memcpy_async->set_op_index(op_desc->GetId()); | |||
| } | |||
| { | |||
| OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT); | |||
| op_desc->AddInputDesc(tensor); | |||
| @@ -375,3 +375,53 @@ TEST_F(UtestGeHybrid, TestTaskContext) { | |||
| ASSERT_EQ(task_context->GetInputDesc(1, new_desc), SUCCESS); | |||
| ASSERT_EQ(new_desc.GetShape().GetDims(), new_shape.GetDims()); | |||
| } | |||
| TEST_F(UtestGeHybrid, unfold_subgraphs_success) { | |||
| ComputeGraphPtr merged_graph = nullptr; | |||
| ComputeGraphPtr sub_sub_graph1 = std::make_shared<ComputeGraph>("while_cond"); | |||
| OpDescPtr sub_sub_graph_while_cond_data_op_desc = CreateOpDesc("cond_data", DATA); | |||
| NodePtr sub_sub_graph_while_cond_data_node = sub_sub_graph1->AddNode(sub_sub_graph_while_cond_data_op_desc); | |||
| ComputeGraphPtr sub_sub_graph2 = std::make_shared<ComputeGraph>("while_body"); | |||
| /*OpDescPtr sub_sub_graph_while_body_const_op_desc = CreateOpDesc("body_const", CONSTANT); | |||
| NodePtr sub_sub_graph_while_body_const_node = sub_sub_graph2->AddNode(sub_sub_graph_while_body_const_op_desc);*/ | |||
| OpDescPtr sub_sub_graph_while_body_data_op_desc = CreateOpDesc("body_data", DATA); | |||
| NodePtr sub_sub_graph_while_body_data_node = sub_sub_graph2->AddNode(sub_sub_graph_while_body_data_op_desc); | |||
| sub_sub_graph2->SetGraphUnknownFlag(true); | |||
| /*OpDescPtr sub_sub_graph_while_body_add_op_desc = CreateOpDesc("body_add", ADD); | |||
| NodePtr sub_sub_graph_while_body_add_node = sub_sub_graph2->AddNode(sub_sub_graph_while_body_add_node); | |||
| sub_sub_graph_while_body_add_node->AddLinkFrom(sub_sub_graph_while_body_data_node); | |||
| sub_sub_graph_while_body_add_node->AddLinkFrom(sub_sub_graph_while_body_const_node);*/ | |||
| ComputeGraphPtr sub_graph = std::make_shared<ComputeGraph>("sub_graph"); | |||
| OpDescPtr sub_graph_while_op_desc = CreateOpDesc("while", WHILE); | |||
| NodePtr sub_graph_while_node = sub_graph->AddNode(sub_graph_while_op_desc); | |||
| sub_graph->SetGraphUnknownFlag(true); | |||
| sub_graph_while_node->GetOpDesc()->AddSubgraphName("while_cond"); | |||
| sub_graph_while_node->GetOpDesc()->AddSubgraphName("while_body"); | |||
| sub_graph_while_node->GetOpDesc()->SetSubgraphInstanceName(0, "while_cond"); | |||
| sub_graph_while_node->GetOpDesc()->SetSubgraphInstanceName(1, "while_body"); | |||
| ComputeGraphPtr root_graph = std::make_shared<ComputeGraph>("root_graph"); | |||
| auto partitioned_call_op_desc = MakeShared<OpDesc>("partitioned_call", PARTITIONEDCALL); | |||
| auto partitioned_call_node = root_graph->AddNode(partitioned_call_op_desc); | |||
| partitioned_call_node->GetOpDesc()->AddSubgraphName("sub_graph"); | |||
| partitioned_call_node->GetOpDesc()->SetSubgraphInstanceName(0, "sub_graph"); | |||
| root_graph->AddSubGraph(sub_sub_graph1); | |||
| root_graph->AddSubGraph(sub_sub_graph2); | |||
| sub_sub_graph1->SetParentGraph(root_graph); | |||
| sub_sub_graph2->SetParentGraph(root_graph); | |||
| sub_sub_graph1->SetParentNode(sub_graph_while_node); | |||
| sub_sub_graph2->SetParentNode(sub_graph_while_node); | |||
| root_graph->AddSubGraph(sub_graph); | |||
| sub_graph->SetParentNode(partitioned_call_node); | |||
| sub_graph->SetParentGraph(root_graph); | |||
| GeRootModelPtr root_model = MakeShared<ge::GeRootModel>(root_graph); | |||
| HybridModel hybrid_model(root_model); | |||
| HybridModelBuilder hybrid_model_builder(hybrid_model); | |||
| EXPECT_EQ(hybrid_model_builder.UnfoldSubgraphs(root_graph, merged_graph), SUCCESS); | |||
| } | |||