Please enter a commit message to explain why this merge is necessary, especially if it merges an updated upstream into a topic branch. Lines starting with '#' will be ignored, and an empty message aborts the commit.pull/873/head
| @@ -74,7 +74,7 @@ if (ENABLE_OPEN_SRC) | |||
| set(STATIC_ACL_LIB ${GE_LIB_PATH}) | |||
| find_module(slog libslog.so ${GE_LIB_PATH}) | |||
| find_module(static_mmpa libmmpa.a ${GE_LIB_PATH}) | |||
| find_module(msprofiler libmsprofiler.a ${GE_LIB_PATH}) | |||
| find_module(msprofiler_ext libmsprofiler.a ${GE_LIB_PATH}) | |||
| find_module(hccl libhccl.so ${GE_LIB_PATH}) | |||
| find_module(adump_server libadump_server.a ${GE_LIB_PATH}) | |||
| find_module(runtime libruntime.so ${GE_LIB_PATH}) | |||
| @@ -83,7 +83,7 @@ if (ENABLE_OPEN_SRC) | |||
| find_module(error_manager liberror_manager.so ${GE_LIB_PATH}) | |||
| find_module(ascend_hal_stub libascend_hal.so ${GE_LIB_PATH}) | |||
| find_module(error_manager_static liberror_manager.a ${GE_LIB_PATH}) | |||
| find_module(msprofiler_fwk libmsprofiler_fwk.a ${GE_LIB_PATH}) | |||
| find_module(msprofiler_fwk_ext libmsprofiler_fwk.a ${GE_LIB_PATH}) | |||
| #find_module(ascendcl_static libascendcl.a ${GE_LIB_PATH}) | |||
| elseif(ENABLE_GE_COV OR ENABLE_GE_UT) | |||
| add_subdirectory(tests) | |||
| @@ -97,7 +97,7 @@ if (ENABLE_OPEN_SRC) | |||
| find_module(runtime libruntime.so ${ASCEND_RUNTIME_DIR}) | |||
| find_module(resource libresource.so ${ASCEND_RUNTIME_DIR}) | |||
| find_module(error_manager liberror_manager.so ${ASCEND_RUNTIME_DIR}) | |||
| find_module(msprofiler_fwk libmsprofiler_fwk.a ${ASCEND_RUNTIME_DIR}) | |||
| find_module(msprofiler_fwk_ext libmsprofiler_fwk.a ${ASCEND_RUNTIME_DIR}) | |||
| find_module(ascend_hal_stub libascend_hal.so ${ASCEND_DRIVER_DIR}/driver) | |||
| if(PRODUCT STREQUAL "flr3") | |||
| message(FATAL_ERROR "This platform is not supported in train mode, build terminated") | |||
| @@ -109,7 +109,7 @@ if (ENABLE_OPEN_SRC) | |||
| find_module(resource libresource.so ${ASCEND_ATC_DIR}) | |||
| find_module(error_manager liberror_manager.so ${ASCEND_ATC_DIR}) | |||
| find_module(error_manager_static liberror_manager.a ${ASCEND_ACL_DIR}) | |||
| find_module(msprofiler libmsprofiler.a ${ASCEND_ACL_DIR}) | |||
| find_module(msprofiler_ext libmsprofiler.a ${ASCEND_ACL_DIR}) | |||
| #find_module(ascendcl_static libascendcl.a ${ASCEND_ACL_DIR}) | |||
| if(PRODUCT STREQUAL "flr3") | |||
| elseif(PRODUCT STREQUAL "flr1") | |||
| @@ -120,7 +120,7 @@ if (ENABLE_OPEN_SRC) | |||
| find_module(ascend_hal_stub libascend_hal.so ${ASCEND_DRIVER_DIR}) | |||
| endif() | |||
| elseif(PLATFORM STREQUAL "all") | |||
| find_module(msprofiler libmsprofiler.a ${ASCEND_ACL_DIR}) | |||
| find_module(msprofiler_ext libmsprofiler.a ${ASCEND_ACL_DIR}) | |||
| find_module(hccl libhccl.so ${ASCEND_RUNTIME_DIR}) | |||
| find_module(adump_server libadump_server.a ${ASCEND_ACL_DIR}) | |||
| find_module(runtime libruntime.so ${ASCEND_ACL_DIR}) | |||
| @@ -128,7 +128,7 @@ if (ENABLE_OPEN_SRC) | |||
| find_module(resource libresource.so ${ASCEND_ATC_DIR}) | |||
| find_module(error_manager liberror_manager.so ${ASCEND_ATC_DIR}) | |||
| find_module(error_manager_static liberror_manager.a ${ASCEND_ACL_DIR}) | |||
| find_module(msprofiler_fwk libmsprofiler_fwk.a ${ASCEND_RUNTIME_DIR}) | |||
| find_module(msprofiler_fwk_ext libmsprofiler_fwk.a ${ASCEND_RUNTIME_DIR}) | |||
| find_module(ascend_hal_stub libascend_hal.so ${ASCEND_DRIVER_DIR}/driver) | |||
| #find_module(ascendcl_static libascendcl.a ${ASCEND_ACL_DIR}) | |||
| else() | |||
| @@ -1,7 +1,6 @@ | |||
| if (NOT ENABLE_D AND NOT ENABLE_ACL AND NOT ENABLE_MS_TESTCASES) | |||
| add_subdirectory(common) | |||
| add_subdirectory(plugin/engine) | |||
| add_subdirectory(graph/build/memory) | |||
| add_subdirectory(ge_local_engine) | |||
| add_subdirectory(host_cpu_engine) | |||
| add_subdirectory(executor) | |||
| @@ -342,6 +341,13 @@ set(TRAIN_SRC_LIST | |||
| "analyzer/analyzer.cc" | |||
| "ir_build/ge_ir_build.cc" | |||
| "ir_build/atc_ir_common.cc" | |||
| "graph/build/memory/memory_assigner.cc" | |||
| "graph/build/memory/graph_mem_assigner.cc" | |||
| "graph/build/memory/binary_block_mem_assigner.cc" | |||
| "graph/build/memory/block_mem_assigner.cc" | |||
| "graph/build/memory/hybrid_mem_assigner.cc" | |||
| "graph/build/memory/max_block_mem_assigner.cc" | |||
| "graph/build/memory/var_mem_assign_util.cc" | |||
| ) | |||
| set(INFER_SRC_LIST | |||
| @@ -611,11 +617,35 @@ set(INFER_SRC_LIST | |||
| "graph/label/while_label_maker.cc" | |||
| "graph/label/partitioned_call_label_maker.cc" | |||
| "analyzer/analyzer.cc" | |||
| "graph/build/memory/memory_assigner.cc" | |||
| "graph/build/memory/graph_mem_assigner.cc" | |||
| "graph/build/memory/binary_block_mem_assigner.cc" | |||
| "graph/build/memory/block_mem_assigner.cc" | |||
| "graph/build/memory/hybrid_mem_assigner.cc" | |||
| "graph/build/memory/max_block_mem_assigner.cc" | |||
| "graph/build/memory/var_mem_assign_util.cc" | |||
| ) | |||
| if (NOT ENABLE_D AND NOT ENABLE_ACL AND NOT ENABLE_MS_TESTCASES) | |||
| ############ libge_runner.so ############ | |||
| add_library(ge_runner SHARED ${TRAIN_SRC_LIST} ${PROTO_SRCS} ${PROTO_CLIENT_SRCS}) | |||
| add_library(ge_runner SHARED | |||
| ${TRAIN_SRC_LIST} | |||
| ${PROTO_SRCS} | |||
| ${PROTO_CLIENT_SRCS} | |||
| $<TARGET_OBJECTS:$<IF:$<TARGET_EXISTS:msprofiler_fwk>,msprofiler_fwk,msprofiler_fwk_object>> | |||
| ) | |||
| add_library(msprofiler_fwk_object OBJECT IMPORTED GLOBAL) | |||
| if (msprofiler_fwk_ext_LIBRARY_DIR) | |||
| file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_fwk_object) | |||
| execute_process( | |||
| COMMAND ar x ${msprofiler_fwk_ext_LIBRARY_DIR} | |||
| WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_fwk_object | |||
| ) | |||
| file(GLOB MSPROFILER_FWK_OBJECT_LIST ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_fwk_object/*.o) | |||
| set_property(TARGET msprofiler_fwk_object PROPERTY IMPORTED_OBJECTS ${MSPROFILER_FWK_OBJECT_LIST}) | |||
| endif() | |||
| target_compile_definitions(ge_runner PRIVATE | |||
| PROTOBUF_INLINE_NOT_IN_HEADERS=0 | |||
| @@ -660,12 +690,8 @@ target_include_directories(ge_runner PRIVATE | |||
| target_link_libraries(ge_runner PRIVATE | |||
| $<BUILD_INTERFACE:intf_pub> | |||
| ge_memory | |||
| adump_server | |||
| static_mmpa | |||
| -Wl,--whole-archive | |||
| msprofiler_fwk | |||
| -Wl,--no-whole-archive | |||
| -Wl,--no-as-needed | |||
| graph | |||
| ge_common | |||
| @@ -728,7 +754,6 @@ target_include_directories(ge_compiler PRIVATE | |||
| target_link_libraries(ge_compiler PRIVATE | |||
| $<BUILD_INTERFACE:intf_pub> | |||
| ge_memory | |||
| static_mmpa | |||
| -Wl,--no-as-needed | |||
| graph | |||
| @@ -755,7 +780,7 @@ file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ascendcl_object) | |||
| if(EXISTS ${STATIC_ACL_LIB}/libascendcl.a) | |||
| execute_process( | |||
| COMMAND ar x ${STATIC_ACL_LIB}/libascendcl.a | |||
| WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ascendcl_object | |||
| WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ascendcl_object | |||
| ) | |||
| file(GLOB OBJECT_LIST ${CMAKE_CURRENT_BINARY_DIR}/ascendcl_object/*.o) | |||
| else() | |||
| @@ -764,8 +789,21 @@ endif() | |||
| add_library(opensrc_ascendcl SHARED | |||
| ${OBJECT_LIST} | |||
| $<TARGET_OBJECTS:$<IF:$<TARGET_EXISTS:msprofiler>,msprofiler,msprofiler_object>> | |||
| ) | |||
| add_library(msprofiler_object OBJECT IMPORTED GLOBAL) | |||
| if (msprofiler_ext_LIBRARY_DIR) | |||
| file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_object) | |||
| execute_process( | |||
| COMMAND ar x ${msprofiler_ext_LIBRARY_DIR} | |||
| WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_object | |||
| ) | |||
| file(GLOB MSPROFILER_OBJECT_LIST ${CMAKE_CURRENT_BINARY_DIR}/msprofiler_object/*.o) | |||
| set_property(TARGET msprofiler_object PROPERTY IMPORTED_OBJECTS ${MSPROFILER_OBJECT_LIST}) | |||
| endif() | |||
| target_compile_definitions(opensrc_ascendcl PRIVATE | |||
| google=ascend_private | |||
| $<$<STREQUAL:${ENABLE_OPEN_SRC},True>:ONLY_COMPILE_OPEN_SRC> | |||
| @@ -780,14 +818,7 @@ target_link_options(opensrc_ascendcl PRIVATE | |||
| -Wl,--allow-multiple-definition | |||
| -Wl,-z,muldefs | |||
| -Wl,-Bsymbolic | |||
| -Wl,--exclude-libs,libascend_protobuf.a | |||
| -Wl,--exclude-libs,libge_executor.a | |||
| -Wl,--exclude-libs,libge_common.a | |||
| -Wl,--exclude-libs,libgraph.a | |||
| -Wl,--exclude-libs,libmmpa.a | |||
| -Wl,--exclude-libs,libregister.a | |||
| -Wl,--exclude-libs,liberror_manager.a | |||
| -Wl,--exclude-libs,libadump_server.a | |||
| -Wl,--exclude-libs,ALL | |||
| ) | |||
| target_link_libraries(opensrc_ascendcl PRIVATE | |||
| -Wl,--whole-archive | |||
| @@ -799,7 +830,6 @@ target_link_libraries(opensrc_ascendcl PRIVATE | |||
| register_static | |||
| error_manager_static | |||
| adump_server | |||
| msprofiler | |||
| -Wl,--no-whole-archive | |||
| -Wl,--no-as-needed | |||
| c_sec | |||
| @@ -302,6 +302,8 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY void ProfilingManager::Profilin | |||
| } | |||
| data.append(" model_id:").append(std::to_string(model_id)); | |||
| data.append(" task_id:").append(std::to_string(graph.task_id)); | |||
| data.append(" stream_id:").append(std::to_string(graph.stream_id)); | |||
| data.append("\n"); | |||
| GraphDescReport(device_id, data); | |||
| @@ -480,6 +480,9 @@ REGISTER_OPTYPE_DEFINE(HVDWAIT, "HorovodWait"); | |||
| // aicpu op for online_infer dynamic_dims | |||
| REGISTER_OPTYPE_DEFINE(GETDYNAMICDIMS, "GetDynamicDims"); | |||
| // profiling training trace node | |||
| REGISTER_OPTYPE_DEFINE(PROFILINGTRAININGTRACE, "ProfilingTrainingTrace"); | |||
| const std::string MODEL_ATTR_TASKS = "tasks"; | |||
| const std::string MODEL_ATTR_TASK_GEN_BASE_ADDR = "task_gen_base_addr"; | |||
| const std::string MODEL_ATTR_TASK_GEN_WEIGHT_ADDR = "task_gen_weight_addr"; | |||
| @@ -676,7 +676,7 @@ Status GeExecutor::GetAIPPInfo(uint32_t model_id, uint32_t index, AippConfigInfo | |||
| GELOGE(ACL_ERROR_GE_EXEC_NOT_INIT, "not inited yet!"); | |||
| return ACL_ERROR_GE_EXEC_NOT_INIT; | |||
| } | |||
| Status ret = GraphExecutor::GetAIPPInfo(model_id, index, aipp_info); | |||
| Status ret = GraphExecutor::GetAippInfo(model_id, index, aipp_info); | |||
| if (ret != SUCCESS) { | |||
| GELOGW("GetAIPPInfo is not success."); | |||
| return ret; | |||
| @@ -713,43 +713,6 @@ Status GeExecutor::GetModelAttr(uint32_t model_id, std::vector<std::string> &dyn | |||
| return SUCCESS; | |||
| } | |||
| Status GeExecutor::GetModelDescInfoForZeroCopy(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc, | |||
| std::vector<TensorDesc> &output_desc) { | |||
| GELOGI("get model desc info for zero copy begin."); | |||
| if (!isInit_) { | |||
| GELOGE(ACL_ERROR_GE_EXEC_NOT_INIT, "GeExecutor has not been initialized!"); | |||
| return ACL_ERROR_GE_EXEC_NOT_INIT; | |||
| } | |||
| std::vector<InputOutputDescInfo> input_desc_infos; | |||
| std::vector<InputOutputDescInfo> output_desc_infos; | |||
| std::vector<uint32_t> input_formats; | |||
| std::vector<uint32_t> output_formats; | |||
| Status ret = GraphExecutor::GetInputOutputDescInfoForZeroCopy(model_id, input_desc_infos, output_desc_infos, | |||
| input_formats, output_formats); | |||
| if (ret != domi::SUCCESS) { | |||
| GELOGE(ret, "Get DescInfo from zero copy failed. ret = %u", ret); | |||
| return ACL_ERROR_GE_GET_TENSOR_INFO; | |||
| } | |||
| if (input_formats.size() != input_desc_infos.size()) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "input_formats.size() != input_desc_infos.size()."); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| if (output_formats.size() != output_desc_infos.size()) { | |||
| GELOGE(ACL_ERROR_GE_PARAM_INVALID, "output_formats.size() != output_desc_infos.size()."); | |||
| return ACL_ERROR_GE_PARAM_INVALID; | |||
| } | |||
| GetGeTensorDescFromDomiInfo(input_desc, input_desc_infos, input_formats); | |||
| GetGeTensorDescFromDomiInfo(output_desc, output_desc_infos, output_formats); | |||
| GELOGI("get model desc info from zero copy end."); | |||
| return ge::SUCCESS; | |||
| } | |||
| Status GeExecutor::CommandHandle(const Command &command) { | |||
| Status ret = GraphLoader::CommandHandle(command); | |||
| if (ret != SUCCESS) { | |||
| @@ -421,6 +421,52 @@ static Status GenerateTaskForConstant(const std::shared_ptr<ComputeGraph> &graph | |||
| return SUCCESS; | |||
| } | |||
| Status GraphBuilder::MarkFpBpProfilingTaskAttr(ComputeGraphPtr &com_graph) { | |||
| bool original_unknown_shape_flag = com_graph->GetGraphUnknownFlag(); | |||
| com_graph->SetGraphUnknownFlag(false); | |||
| GELOGD("Start to mark profiling task attr for fp and bp."); | |||
| TaskGenerator task_generator; | |||
| ProfilingPoint profiling_point; | |||
| std::vector<uint32_t> all_reduce_node_index; | |||
| Status ret = task_generator.FindProfilingNodeIndex(com_graph, profiling_point, all_reduce_node_index); | |||
| com_graph->SetGraphUnknownFlag(original_unknown_shape_flag); | |||
| if (ret != SUCCESS) { | |||
| GELOGW("Find profiling node index failed."); | |||
| } | |||
| if (profiling_point.fp_index == 0 || profiling_point.bp_index == 0 || profiling_point.end_index.empty()) { | |||
| GELOGD("No need to mark fp bp profiling task attr."); | |||
| return SUCCESS; | |||
| } | |||
| // mark profiling task attr for node | |||
| uint32_t node_index = 0; | |||
| for (const auto &node : com_graph->GetAllNodes()) { | |||
| OpDescPtr op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(node->GetOpDesc()); | |||
| node_index++; | |||
| if (profiling_point.fp_index == node_index) { | |||
| GELOGI("The first fp node of dynamic graph is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| (void)ge::AttrUtils::SetBool(op_desc, ATTR_NAME_INSERT_FP_PROFILILNG_TASK, true); | |||
| } | |||
| if (profiling_point.bp_index == node_index) { | |||
| GELOGI("The bp node of dynamic graph is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| (void)ge::AttrUtils::SetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, true); | |||
| } | |||
| for (size_t i = 0; i < all_reduce_node_index.size(); i++) { | |||
| if (all_reduce_node_index[i] == node_index) { | |||
| GELOGI("The all reduce node of dynamic graph is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| (void)ge::AttrUtils::SetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, true); | |||
| continue; | |||
| } | |||
| } | |||
| if (profiling_point.end_index.find(node_index) != profiling_point.end_index.end()) { | |||
| GELOGI("The end node of dynamic graph is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| (void)ge::AttrUtils::SetBool(op_desc, ATTR_NAME_INSERT_END_PROFILILNG_TASK, true); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GraphBuilder::BuildForDynamicShapeGraph(ComputeGraphPtr &comp_graph, | |||
| std::vector<SubGraphInfoPtr> &subgraph_ptr_list, | |||
| GeRootModelPtr &ge_root_model_ptr, GeModelPtr &ge_model_ptr, | |||
| @@ -437,6 +483,12 @@ Status GraphBuilder::BuildForDynamicShapeGraph(ComputeGraphPtr &comp_graph, | |||
| } | |||
| } | |||
| // Set fp bp profiling task attr for graph | |||
| if (MarkFpBpProfilingTaskAttr(comp_graph) != SUCCESS) { | |||
| GELOGE(FAILED, "Set fp bp profiling task attr for graph."); | |||
| return FAILED; | |||
| } | |||
| auto all_graphs = comp_graph->GetAllSubgraphs(); | |||
| if (all_graphs.empty()) { | |||
| all_graphs.push_back(comp_graph); | |||
| @@ -60,6 +60,7 @@ class GraphBuilder { | |||
| Status UpdateParentNodeOutputSize(const ge::ComputeGraphPtr &graph, ge::NodePtr &parent_node_ptr); | |||
| Status CalcDynShapeRootGraphDataSize(const ge::OpDescPtr &op_desc); | |||
| Status SecondPartition(ge::ComputeGraphPtr &comp_graph, vector<ge::SubGraphInfoPtr> &subgraph_ptr_list); | |||
| Status MarkFpBpProfilingTaskAttr(ComputeGraphPtr &com_graph); | |||
| Status BuildForDynamicShapeGraph(ComputeGraphPtr &comp_graph, std::vector<SubGraphInfoPtr> &subgraph_ptr_list, | |||
| GeRootModelPtr &ge_root_model_ptr, GeModelPtr &ge_model_ptr, | |||
| uint64_t session_id = INVALID_SESSION_ID); | |||
| @@ -1,45 +0,0 @@ | |||
| set(SRC_LIST | |||
| "memory_assigner.cc" | |||
| "graph_mem_assigner.cc" | |||
| "binary_block_mem_assigner.cc" | |||
| "block_mem_assigner.cc" | |||
| "hybrid_mem_assigner.cc" | |||
| "max_block_mem_assigner.cc" | |||
| "var_mem_assign_util.cc" | |||
| ) | |||
| ############ libge_memory.a ############ | |||
| add_library(ge_memory STATIC ${SRC_LIST}) | |||
| target_compile_options(ge_memory PRIVATE | |||
| -Werror | |||
| -O2 | |||
| -fno-common | |||
| ) | |||
| target_compile_definitions(ge_memory PRIVATE | |||
| google=ascend_private | |||
| LOG_CPP | |||
| $<$<STREQUAL:${ENABLE_OPEN_SRC},True>:ONLY_COMPILE_OPEN_SRC> | |||
| ) | |||
| target_link_libraries(ge_memory PRIVATE | |||
| $<BUILD_INTERFACE:intf_pub> | |||
| ascend_protobuf | |||
| c_sec | |||
| ) | |||
| target_include_directories(ge_memory PRIVATE | |||
| ${CMAKE_CURRENT_LIST_DIR} | |||
| ${GE_CODE_DIR}/ge | |||
| ${GE_CODE_DIR}/inc | |||
| ${GE_CODE_DIR}/inc/external | |||
| ${METADEF_DIR}/inc | |||
| ${METADEF_DIR}/inc/external | |||
| ${METADEF_DIR}/inc/external/graph | |||
| ${GE_CODE_DIR}/inc/framework | |||
| #### yellow zone #### | |||
| ${GE_CODE_DIR}/../inc | |||
| #### blue zone #### | |||
| ${GE_CODE_DIR}/third_party/fwkacllib/inc | |||
| ) | |||
| @@ -274,6 +274,7 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||
| }; | |||
| GE_MAKE_GUARD(release, callback); | |||
| uint64_t all_reduce_node_idx = 0; | |||
| for (auto &node : graph->GetNodes(graph->GetGraphUnknownFlag())) { | |||
| OpDescPtr op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| @@ -292,7 +293,7 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||
| // Part2: Call | |||
| auto fusion_task_info = | |||
| FusionTaskInfo{run_context, graph, node, op_desc, node_index, ge_lib, | |||
| ops_kernel_manager, task_def_list, op_name_map, profiling_point, all_reduce_nodes}; | |||
| ops_kernel_manager, task_def_list, op_name_map, profiling_point, all_reduce_nodes, all_reduce_node_idx}; | |||
| GE_CHK_STATUS_RET(GenerateTaskForFusionNode(fusion_task_info, fusion_nodes, fusion_nodes_seen), | |||
| "Call GenerateTaskForFusionNode node:%s(%s) failed", name.c_str(), type.c_str()); | |||
| // continue directly | |||
| @@ -316,7 +317,8 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||
| type.c_str()); | |||
| // Profiling task | |||
| size_t task_list_size_before = task_def_list.size(); | |||
| GE_CHK_STATUS_RET(InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list)); | |||
| GE_CHK_STATUS_RET(InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, | |||
| node_index, task_def_list, all_reduce_node_idx)); | |||
| int64_t op_id = op_desc->GetId(); | |||
| // Compatible with dynamic shape scenes, the default is 0 | |||
| int64_t stream_id = 0; | |||
| @@ -336,8 +338,8 @@ Status TaskGenerator::GenerateTask(RunContext &run_context, ComputeGraphPtr &gra | |||
| return ret; | |||
| } | |||
| // Profiling task | |||
| GE_CHK_STATUS_RET(InsertProfilingTaskAfter(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list)); | |||
| GE_CHK_STATUS_RET(InsertProfilingTaskAfter(op_desc, profiling_point, all_reduce_nodes, | |||
| node_index, task_def_list, all_reduce_node_idx)); | |||
| size_t task_list_size_after = task_def_list.size(); | |||
| // If tasks is reduced | |||
| if (task_list_size_after < task_list_size_before) { | |||
| @@ -380,6 +382,7 @@ Status TaskGenerator::GenerateTaskForFusionNode(FusionTaskInfo &fusion_task_info | |||
| auto &op_name_map = fusion_task_info.op_name_map; | |||
| auto &profiling_point = fusion_task_info.profiling_point; | |||
| auto &all_reduce_nodes = fusion_task_info.all_reduce_nodes; | |||
| auto &all_reduce_idx = fusion_task_info.all_reduce_node_idx; | |||
| // If op_desc have this attr, call nodes with same group key in a stream together | |||
| if (ge::AttrUtils::GetInt(fusion_op_desc, ATTR_NAME_FUSION_GROUP_KEY, group_key) && | |||
| (fusion_nodes_seen.count(node.get()) == 0)) { | |||
| @@ -426,7 +429,8 @@ Status TaskGenerator::GenerateTaskForFusionNode(FusionTaskInfo &fusion_task_info | |||
| return INTERNAL_ERROR; | |||
| } | |||
| // profiling task | |||
| (void)InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list); | |||
| (void)InsertProfilingTaskBefore(op_desc, profiling_point, all_reduce_nodes, | |||
| node_index, task_def_list, all_reduce_idx); | |||
| run_context.stream = run_context.graphStreamList[stream_id]; | |||
| GELOGI("Fusion: Call %s to generate fusion_node:[fusion_node_name:%s(%s), id:%ld, stream_id:%ld] task.", | |||
| op_kernel_lib_name.c_str(), fusion_node_name.c_str(), fusion_node_type.c_str(), op_id, stream_id); | |||
| @@ -439,7 +443,8 @@ Status TaskGenerator::GenerateTaskForFusionNode(FusionTaskInfo &fusion_task_info | |||
| return ret; | |||
| } | |||
| // profiling task | |||
| (void)InsertProfilingTaskAfter(op_desc, profiling_point, all_reduce_nodes, node_index, task_def_list); | |||
| (void)InsertProfilingTaskAfter(op_desc, profiling_point, all_reduce_nodes, | |||
| node_index, task_def_list, all_reduce_idx); | |||
| size_t task_list_size_after = task_def_list.size(); | |||
| // if tasks is reduced | |||
| if (task_list_size_after < task_list_size_before) { | |||
| @@ -830,6 +835,11 @@ Status TaskGenerator::GetFpBpIndex(const ComputeGraphPtr &graph, ProfilingPoint | |||
| return SUCCESS; | |||
| } | |||
| Status TaskGenerator::FindProfilingNodeIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | |||
| std::vector<uint32_t> &all_reduce_nodes) { | |||
| return FindProfilingTaskIndex(graph, profiling_point, all_reduce_nodes); | |||
| } | |||
| Status TaskGenerator::FindProfilingTaskIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | |||
| vector<uint32_t> &all_reduce_nodes) const { | |||
| GE_CHECK_NOTNULL(graph); | |||
| @@ -840,7 +850,6 @@ Status TaskGenerator::FindProfilingTaskIndex(const ComputeGraphPtr &graph, Profi | |||
| GELOGD("Profiling is not open."); | |||
| return SUCCESS; | |||
| } | |||
| GELOGI("Start get FP/BP index."); | |||
| std::string fp_point_str; | |||
| std::string bp_point_str; | |||
| @@ -878,18 +887,27 @@ Status TaskGenerator::FindProfilingTaskIndex(const ComputeGraphPtr &graph, Profi | |||
| return SUCCESS; | |||
| } | |||
| Status TaskGenerator::InsertProfilingTaskBefore(const OpDescPtr &op_desc, const ProfilingPoint &profiling_point, | |||
| vector<uint32_t> &all_reduce_nodes, uint32_t node_index, | |||
| vector<domi::TaskDef> &task_def_list) { | |||
| vector<domi::TaskDef> &task_def_list, uint64_t &all_reduce_node_idx) { | |||
| const char *profiling_mode = std::getenv(kProfilingMode); | |||
| bool is_profiling = (profiling_mode != nullptr) || ProfilingManager::Instance().ProfilingOn() || | |||
| ProfilingManager::Instance().ProfilingTrainingTraceOn(); | |||
| if (!is_profiling || (profiling_point.fp_index == 0) || (profiling_point.bp_index == 0) || | |||
| (profiling_point.end_index.empty())) { | |||
| bool is_insert_fp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_FP_PROFILILNG_TASK, is_insert_fp_profiling_task); | |||
| bool is_insert_bp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); | |||
| bool no_insert_profiling_task = ((profiling_point.fp_index == 0) || (profiling_point.bp_index == 0) || | |||
| (profiling_point.end_index.empty())) && | |||
| (!(is_insert_fp_profiling_task || is_insert_bp_profiling_task)); | |||
| if (!is_profiling || no_insert_profiling_task) { | |||
| return SUCCESS; | |||
| } | |||
| if (profiling_point.fp_index == node_index) { | |||
| GELOGD("Insert fp profiling task: %d, insert bp profiling task: %d, fp index: %u, bp index: %u, end index size: %zu", | |||
| is_insert_fp_profiling_task, is_insert_bp_profiling_task, profiling_point.fp_index, profiling_point.bp_index, | |||
| profiling_point.end_index.size()); | |||
| if ((profiling_point.fp_index == node_index) || is_insert_fp_profiling_task) { | |||
| uint64_t jobid_log_id = ge::GetContext().TraceId(); | |||
| GELOGI("The first FP operator is %s, idx %u, job_id %lu", op_desc->GetName().c_str(), node_index, jobid_log_id); | |||
| @@ -913,22 +931,40 @@ Status TaskGenerator::InsertProfilingTaskBefore(const OpDescPtr &op_desc, const | |||
| task_def_list.emplace_back(fp_task_def); | |||
| } | |||
| for (size_t i = 0; i < all_reduce_nodes.size(); i++) { | |||
| if (all_reduce_nodes[i] != node_index) { | |||
| continue; | |||
| bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); | |||
| uint64_t all_reduce_task_idx = 0; | |||
| bool is_insert_all_reduce_task = false; | |||
| if (is_all_reduce && is_insert_bp_profiling_task) { | |||
| all_reduce_task_idx = all_reduce_node_idx; | |||
| is_insert_all_reduce_task = true; | |||
| } | |||
| if (is_all_reduce) { | |||
| all_reduce_node_idx++; | |||
| } | |||
| if (!is_insert_all_reduce_task) { | |||
| for (size_t i = 0; i < all_reduce_nodes.size(); i++) { | |||
| if (all_reduce_nodes[i] == node_index) { | |||
| all_reduce_task_idx = i; | |||
| is_insert_all_reduce_task = true; | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| if (is_insert_all_reduce_task) { | |||
| GELOGI("The start allreduce operator is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| TaskDef ar_task_def; | |||
| ar_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| ar_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *ar_log_def = ar_task_def.mutable_log_timestamp(); | |||
| if (ar_log_def != nullptr) { | |||
| GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(i, kProfilingArStep), | |||
| GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(all_reduce_task_idx, kProfilingArStep), | |||
| GELOGE(FAILED, "Multiply result is out of range."); | |||
| return FAILED); | |||
| auto log_id = i * kProfilingArStep + kProfilingArStartLogid; | |||
| auto log_id = all_reduce_task_idx * kProfilingArStep + kProfilingArStartLogid; | |||
| ar_log_def->set_logid(log_id); | |||
| ar_log_def->set_notify(false); | |||
| (void)ge::AttrUtils::SetInt(op_desc, ATTR_NAME_INSERT_PROFILILNG_TASK_LOG_ID, log_id); | |||
| } | |||
| task_def_list.push_back(ar_task_def); | |||
| } | |||
| @@ -937,16 +973,27 @@ Status TaskGenerator::InsertProfilingTaskBefore(const OpDescPtr &op_desc, const | |||
| Status TaskGenerator::InsertProfilingTaskAfter(const OpDescPtr &op_desc, const ProfilingPoint &profiling_point, | |||
| vector<uint32_t> &all_reduce_nodes, uint32_t node_index, | |||
| vector<domi::TaskDef> &task_def_list) { | |||
| vector<domi::TaskDef> &task_def_list, uint64_t all_reduce_node_idx) { | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| const char *profiling_mode = std::getenv(kProfilingMode); | |||
| bool is_profiling = (profiling_mode != nullptr) || ProfilingManager::Instance().ProfilingOn() || | |||
| ProfilingManager::Instance().ProfilingTrainingTraceOn(); | |||
| if (!is_profiling || (profiling_point.fp_index == 0) || (profiling_point.bp_index == 0) || | |||
| (profiling_point.end_index.empty())) { | |||
| bool is_insert_bp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); | |||
| bool is_insert_end_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_END_PROFILILNG_TASK, is_insert_end_profiling_task); | |||
| bool no_insert_profiling_task = ((profiling_point.fp_index == 0) || (profiling_point.bp_index == 0) || | |||
| (profiling_point.end_index.empty())) && | |||
| (!(is_insert_bp_profiling_task || is_insert_end_profiling_task)); | |||
| if (!is_profiling || no_insert_profiling_task) { | |||
| return SUCCESS; | |||
| } | |||
| if (profiling_point.bp_index == node_index) { | |||
| GELOGD("Insert bp profiling task: %d, insert end profiling task: %d, fp index: %u, bp index: %u, end index size: %zu", | |||
| is_insert_bp_profiling_task, is_insert_end_profiling_task, profiling_point.fp_index, profiling_point.bp_index, | |||
| profiling_point.end_index.size() ); | |||
| bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); | |||
| if ((profiling_point.bp_index == node_index) || (!is_all_reduce && is_insert_bp_profiling_task)) { | |||
| GELOGI("The last BP operator is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| TaskDef bp_task_def; | |||
| bp_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| @@ -957,7 +1004,9 @@ Status TaskGenerator::InsertProfilingTaskAfter(const OpDescPtr &op_desc, const P | |||
| bp_log_def->set_notify(false); | |||
| task_def_list.emplace_back(bp_task_def); | |||
| } | |||
| if (profiling_point.end_index.find(node_index) != profiling_point.end_index.end()) { | |||
| if (profiling_point.end_index.find(node_index) != profiling_point.end_index.end() || | |||
| is_insert_end_profiling_task) { | |||
| GELOGI("The iteration end operator is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| TaskDef end_task_def; | |||
| end_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| @@ -969,20 +1018,32 @@ Status TaskGenerator::InsertProfilingTaskAfter(const OpDescPtr &op_desc, const P | |||
| task_def_list.emplace_back(end_task_def); | |||
| } | |||
| uint32_t all_reduce_task_idx = 0; | |||
| bool is_insert_all_reduce_task = false; | |||
| if (is_all_reduce && is_insert_bp_profiling_task) { | |||
| all_reduce_task_idx = all_reduce_node_idx; | |||
| is_insert_all_reduce_task = true; | |||
| } | |||
| for (size_t i = 0; i < all_reduce_nodes.size(); i++) { | |||
| if (all_reduce_nodes[i] != node_index) { | |||
| continue; | |||
| if (all_reduce_nodes[i] == node_index) { | |||
| all_reduce_task_idx = i; | |||
| is_insert_all_reduce_task = true; | |||
| break; | |||
| } | |||
| } | |||
| if (is_insert_all_reduce_task) { | |||
| GELOGI("The end allreduce operator is %s, idx %u", op_desc->GetName().c_str(), node_index); | |||
| TaskDef ar_task_def; | |||
| ar_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| ar_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *ar_log_def = ar_task_def.mutable_log_timestamp(); | |||
| GE_CHECK_NOTNULL(ar_log_def); | |||
| GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(i, kProfilingArStep), | |||
| GE_IF_BOOL_EXEC(TypeUtils::CheckUint64MulOverflow(all_reduce_task_idx, kProfilingArStep), | |||
| GELOGE(FAILED, "Multiply result is out of range."); | |||
| return FAILED); | |||
| auto log_id = i * kProfilingArStep + kProfilingArEndLogid; | |||
| auto log_id = all_reduce_task_idx * kProfilingArStep + kProfilingArEndLogid; | |||
| ar_log_def->set_logid(log_id); | |||
| ar_log_def->set_notify(false); | |||
| task_def_list.emplace_back(ar_task_def); | |||
| @@ -51,6 +51,7 @@ struct FusionTaskInfo { | |||
| std::map<uint32_t, string> &op_name_map; | |||
| ProfilingPoint &profiling_point; | |||
| vector<uint32_t> all_reduce_nodes; | |||
| uint64_t all_reduce_node_idx; | |||
| }; | |||
| class TaskGenerator { | |||
| @@ -76,6 +77,8 @@ class TaskGenerator { | |||
| /// | |||
| Status GetTaskInfo(Model &model, ComputeGraphPtr &graph, uint64_t session_id, RunContext &run_context); | |||
| Status FindProfilingNodeIndex(const ComputeGraphPtr &graph, ProfilingPoint &profiling_point, | |||
| std::vector<uint32_t> &all_reduce_nodes); | |||
| private: | |||
| Status UpdateAnchorStatus(const NodePtr &node); | |||
| @@ -126,10 +129,10 @@ class TaskGenerator { | |||
| std::vector<uint32_t> &all_reduce_nodes) const; | |||
| Status InsertProfilingTaskBefore(const OpDescPtr &op_desc, const ProfilingPoint &profiling_point, | |||
| std::vector<uint32_t> &all_reduce_nodes, uint32_t node_index, | |||
| std::vector<domi::TaskDef> &task_def_list); | |||
| std::vector<domi::TaskDef> &task_def_list, uint64_t &all_reduce_node_idx); | |||
| Status InsertProfilingTaskAfter(const OpDescPtr &op_desc, const ProfilingPoint &profiling_point, | |||
| std::vector<uint32_t> &all_reduce_nodes, uint32_t node_index, | |||
| std::vector<domi::TaskDef> &task_def_list); | |||
| std::vector<domi::TaskDef> &task_def_list, uint64_t all_reduce_node_idx); | |||
| static bool IsProfPoint(const OpDescPtr &op, const std::string &name); | |||
| @@ -560,34 +560,10 @@ Status GraphExecutor::GetModelAttr(uint32_t model_id, std::vector<string> &dynam | |||
| return SUCCESS; | |||
| } | |||
| Status GraphExecutor::GetInputOutputDescInfoForZeroCopy(uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
| vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<uint32_t> &input_formats, | |||
| std::vector<uint32_t> &out_formats) { | |||
| try { | |||
| auto model_manager = ge::ModelManager::GetInstance(); | |||
| GE_CHECK_NOTNULL(model_manager); | |||
| Status ret = | |||
| model_manager->GetInputOutputDescInfoForZeroCopy(model_id, input_desc, output_desc, input_formats, out_formats); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(ret, "GetInputOutputDescInfoForZeroCopy failed."); | |||
| return ret; | |||
| } | |||
| } catch (std::bad_alloc &) { | |||
| GELOGE(MEMALLOC_FAILED, "GetInputOutputDescInfoForZeroCopy failed, bad memory allocation occur !"); | |||
| return MEMALLOC_FAILED; | |||
| } catch (...) { | |||
| GELOGE(FAILED, "GetInputOutputDescInfoForZeroCopy failed, some exceptions occur !"); | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GraphExecutor::GetAIPPInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) { | |||
| Status GraphExecutor::GetAippInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) { | |||
| auto model_manager = ge::ModelManager::GetInstance(); | |||
| GE_CHECK_NOTNULL(model_manager); | |||
| Status ret = model_manager->GetAIPPInfo(model_id, index, aipp_info); | |||
| Status ret = model_manager->GetAippInfo(model_id, index, aipp_info); | |||
| if (ret != SUCCESS) { | |||
| GELOGW("GetAIPPInfo is not success."); | |||
| return ret; | |||
| @@ -73,7 +73,7 @@ class GraphExecutor { | |||
| vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &input_formats, | |||
| std::vector<uint32_t> &output_formats, bool new_model_desc = false); | |||
| static Status GetAIPPInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info); | |||
| static Status GetAippInfo(uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info); | |||
| static Status GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index); | |||
| @@ -110,10 +110,6 @@ class GraphExecutor { | |||
| static Status GetModelAttr(uint32_t model_id, std::vector<string> &dynamic_output_shape_info); | |||
| static Status GetInputOutputDescInfoForZeroCopy(uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
| vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<uint32_t> &input_formats, | |||
| std::vector<uint32_t> &output_formats); | |||
| static Status GetOrigInputInfo(uint32_t model_id, uint32_t index, OriginInputInfo &orig_input_info); | |||
| static Status GetAllAippInputOutputDims(uint32_t model_id, uint32_t index, std::vector<InputOutputDims> &input_dims, | |||
| std::vector<InputOutputDims> &output_dims); | |||
| @@ -75,7 +75,6 @@ | |||
| namespace ge { | |||
| namespace { | |||
| const uint32_t kDataIndex = 0; | |||
| const uint32_t kOutputNum = 1; | |||
| const uint32_t kTrueBranchStreamNum = 1; | |||
| const uint32_t kGetDynamicDimsCount = 1; | |||
| const uint32_t kThreadNum = 16; | |||
| @@ -87,6 +86,7 @@ const uint32_t kDumpL1FusionOpMByteSize = 2097152; // 2 * 1024 * 1024 | |||
| const uint32_t kDumpFlagOfL1Fusion = 0; | |||
| const char *const kDefaultBatchLable = "Batch_default"; | |||
| const char *const kGetDynamicDimsName = "ascend_mbatch_get_dynamic_dims_node"; | |||
| const char *const kMultiBatchNodePostfix = "_ascend_mbatch_batch_"; | |||
| const int32_t kInvalidStream = -1; | |||
| const uint32_t kEndOfSequence = 0x0704000a; | |||
| const uint32_t kEndOfSequenceNew = 507005; | |||
| @@ -155,7 +155,6 @@ DavinciModel::~DavinciModel() { | |||
| GE_CHK_STATUS(ModelRunStop()); | |||
| op_list_.clear(); | |||
| data_op_list_.clear(); | |||
| tensor_name_to_fixed_addr_size_.clear(); | |||
| tensor_name_to_peer_output_index_.clear(); | |||
| GE_DELETE_NEW_SINGLE(data_inputer_); | |||
| @@ -867,13 +866,17 @@ Status DavinciModel::InitNodes(const ComputeGraphPtr &compute_graph) { | |||
| GELOGE(PARAM_INVALID, "NetOutput init failed, Name: %s", op_desc->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| if (InitRealSizeAndShapeInfo(compute_graph, node) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "Init real size and shape failed, Name: %s", op_desc->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| continue; | |||
| } | |||
| auto it = op_desc_handle.find(op_desc->GetType()); | |||
| if (it != op_desc_handle.end()) { | |||
| if ((this->*it->second)(op_desc) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "NetOutput init failed, Name: %s", op_desc->GetName().c_str()); | |||
| GELOGE(PARAM_INVALID, "Node init failed, Name: %s", op_desc->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| continue; | |||
| @@ -926,7 +929,7 @@ Status DavinciModel::InitNodes(const ComputeGraphPtr &compute_graph) { | |||
| GE_TIMESTAMP_CALLNUM_END(LoadTBEKernelBinToOpDesc, "GraphLoader::LoadTBEKernelBinToOpDesc."); | |||
| GE_TIMESTAMP_CALLNUM_END(InitTbeHandle, "GraphLoader::InitTbeHandle."); | |||
| return OptInputOutputInfo(data_by_index, output_op_list); | |||
| return GenInputOutputInfo(data_by_index, output_op_list); | |||
| } | |||
| void DavinciModel::SetLabelForDynamic(const NodePtr &node) { | |||
| @@ -969,9 +972,6 @@ Status DavinciModel::InitDataOp(const ComputeGraphPtr &graph, const NodePtr &nod | |||
| } | |||
| data_by_index[data_index] = op_desc; | |||
| auto data_op = AttrUtils::CopyOpDesc(op_desc); | |||
| GE_CHECK_NOTNULL(data_op); | |||
| data_op_list_.push_back(data_op); | |||
| if (known_node_) { | |||
| return SUCCESS; | |||
| } | |||
| @@ -1017,23 +1017,18 @@ Status DavinciModel::InitDataOp(const ComputeGraphPtr &graph, const NodePtr &nod | |||
| /// @param [in] output_op_list: list of NetOutput op. | |||
| /// @return Status | |||
| /// | |||
| Status DavinciModel::OptInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, | |||
| Status DavinciModel::GenInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, | |||
| const vector<OpDescPtr> &output_op_list) { | |||
| GELOGD("Data node size: %zu, NetOutput node size: %zu", data_op_list_.size(), output_op_list.size()); | |||
| if (data_by_index.size() != data_op_list_.size()) { | |||
| GELOGE(INTERNAL_ERROR, "Data map size: %zu, Data list size: %zu.", data_by_index.size(), data_op_list_.size()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| data_op_list_.clear(); | |||
| GELOGD("Data node size: %zu, NetOutput node size: %zu", data_by_index.size(), output_op_list.size()); | |||
| for (auto &item : data_by_index) { | |||
| auto data_op = AttrUtils::CopyOpDesc(item.second); | |||
| GE_CHECK_NOTNULL(data_op); | |||
| data_op_list_.emplace_back(data_op); | |||
| auto output_addrs = ModelUtils::GetOutputDataAddrs(runtime_param_, item.second); | |||
| GELOGD("Data node: %s, output addr size: %zu", item.second->GetName().c_str(), output_addrs.size()); | |||
| input_addrs_list_.emplace_back(output_addrs); | |||
| GE_CHK_STATUS_RET(InitAippInfo(item.first, item.second), "Init AIPP Info failed"); | |||
| GE_CHK_STATUS_RET(InitAippType(item.first, item.second, data_by_index), "Init AIPP Type failed"); | |||
| GE_CHK_STATUS_RET(InitOrigInputInfo(item.first, item.second), "Init Orig input failed"); | |||
| GE_CHK_STATUS_RET(InitAippInputOutputDims(item.first, item.second), "Init AIPP dims failed"); | |||
| if (item.second->GetType() == AIPP_DATA_TYPE) { | |||
| GELOGI("This is dynamic aipp model, Node: %s", item.second->GetName().c_str()); | |||
| is_dynamic_aipp_ = true; | |||
| @@ -1061,7 +1056,8 @@ Status DavinciModel::OptInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_ | |||
| } | |||
| } | |||
| return InitOutputDescInfo(output_op_list, output_descs_, output_formats_); | |||
| GE_CHK_STATUS_RET(InitInputDescInfo(data_by_index), "Init input desc info failed"); | |||
| return InitOutputDescInfo(output_op_list); | |||
| } | |||
| bool DavinciModel::IsGetNextSinkDynamic(const OpDescPtr &op_desc) { | |||
| @@ -1143,16 +1139,24 @@ Status DavinciModel::InitNetOutput(const ComputeGraphPtr &graph, const NodePtr & | |||
| real_virtual_addrs_.insert(real_addr); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::InitRealSizeAndShapeInfo(const ComputeGraphPtr &compute_graph, const NodePtr &node) { | |||
| if (node->GetName().find(kMultiBatchNodePostfix) != string::npos) { | |||
| GELOGD("No need to get size and shape of netoutput in subgraph."); | |||
| return SUCCESS; | |||
| } | |||
| GELOGD("Start init real size and shape info of %s.", node->GetName().c_str()); | |||
| GetAllGearsInfo(node); | |||
| if (is_getnext_sink_dynamic_) { | |||
| GE_IF_BOOL_EXEC(GetGetDynamicDimsNodeInfo(node) != SUCCESS, | |||
| GELOGE(PARAM_INVALID, "Failed to get info of getdynamicdims node."); return PARAM_INVALID;); | |||
| } | |||
| if (is_online_infer_dynamic_) { | |||
| GE_IF_BOOL_EXEC(GetGearAndRealOutSizeInfo(input_count, node) != SUCCESS, | |||
| GE_IF_BOOL_EXEC(GetGearAndRealOutSizeInfo(compute_graph, node) != SUCCESS, | |||
| GELOGE(PARAM_INVALID, "Failed to get gear and real out size info."); return PARAM_INVALID;); | |||
| GE_IF_BOOL_EXEC(GetGearAndRealOutShapeInfo(input_count, op_desc) != SUCCESS, | |||
| GE_IF_BOOL_EXEC(GetGearAndRealOutShapeInfo(compute_graph, node) != SUCCESS, | |||
| GELOGE(PARAM_INVALID, "Failed to get gear and real out shape info."); return PARAM_INVALID;); | |||
| } | |||
| @@ -1171,7 +1175,7 @@ void DavinciModel::GetAllGearsInfo(const NodePtr &node) { | |||
| if (shape_str.empty()) { | |||
| continue; | |||
| } | |||
| std::vector<int64_t> gear_info; | |||
| std::vector<int32_t> gear_info; | |||
| std::vector<std::string> dims = ge::StringUtils::Split(shape_str, ','); | |||
| for (const auto &dim : dims) { | |||
| if (dim.empty()) { | |||
| @@ -1187,6 +1191,7 @@ void DavinciModel::GetAllGearsInfo(const NodePtr &node) { | |||
| } | |||
| } | |||
| } | |||
| Status DavinciModel::GetGetDynamicDimsNodeInfo(const NodePtr &node) { | |||
| GE_CHECK_NOTNULL(node->GetOpDesc()); | |||
| size_t input_count = node->GetAllInDataAnchors().size(); | |||
| @@ -1224,11 +1229,11 @@ Status DavinciModel::GetGetDynamicDimsNodeInfo(const NodePtr &node) { | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetGearAndRealOutSizeInfo(size_t input_count, const NodePtr &node) { | |||
| GELOGD("Start get gear and real output size info of %s, input count is %zu.", node->GetName().c_str(), input_count); | |||
| Status DavinciModel::GetGearAndRealOutSizeInfo(const ComputeGraphPtr &graph, const NodePtr &node) { | |||
| GELOGD("Start get gear and real output size info of %s.", node->GetName().c_str()); | |||
| merge_nodes_gear_and_real_out_size_info_.clear(); | |||
| for (size_t idx = 0; idx < input_count; ++idx) { | |||
| auto in_anchor = node->GetAllInDataAnchors().at(idx); | |||
| size_t idx = 0; | |||
| for (const auto &in_anchor : node->GetAllInDataAnchors()) { | |||
| auto peer_out_anchor = in_anchor->GetPeerOutAnchor(); | |||
| if (peer_out_anchor == nullptr) { | |||
| continue; | |||
| @@ -1236,89 +1241,106 @@ Status DavinciModel::GetGearAndRealOutSizeInfo(size_t input_count, const NodePtr | |||
| auto peer_node = peer_out_anchor->GetOwnerNode(); | |||
| auto op_desc = peer_node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| if ((peer_node->GetType() == MERGE) && (op_desc->HasAttr(ATTR_INSERT_BY_MBATCH))) { | |||
| if (GetRealOutputSizeOfMerge(idx, peer_node) != SUCCESS) { | |||
| if ((peer_node->GetType() == CASE) && (op_desc->HasAttr(ATTR_INSERT_BY_MBATCH))) { | |||
| if (GetRealOutputSizeOfCase(graph, idx, peer_node) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "Get real output size of %s failed.", peer_node->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| } | |||
| idx++; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetRealOutputSizeOfMerge(size_t input_index, const NodePtr &merge_node) { | |||
| GELOGD("Start get output size of %s, which is %zu input to netoutput.", merge_node->GetName().c_str(), input_index); | |||
| std::map<vector<int64_t>, int64_t> gear_and_real_out_size_info; | |||
| for (auto &in_anchor : merge_node->GetAllInDataAnchors()) { | |||
| auto peer_out_anchor = in_anchor->GetPeerOutAnchor(); | |||
| if (peer_out_anchor == nullptr) { | |||
| continue; | |||
| } | |||
| auto in_node = peer_out_anchor->GetOwnerNode(); | |||
| GELOGD("Input node of merge is %s.", in_node->GetName().c_str()); | |||
| auto op_desc = in_node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| string batch_label; | |||
| if (AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label)) { | |||
| size_t batch_index = static_cast<size_t>(stoi(batch_label.substr(batch_label.rfind('_') + 1))); | |||
| GELOGD("Batch index of %s is %zu.", op_desc->GetName().c_str(), batch_index); | |||
| if (batch_index > all_gears_info_.size()) { | |||
| GELOGE(PARAM_INVALID, "The value of ATTR_NAME_BATCH_LABEL is invalid."); | |||
| return PARAM_INVALID; | |||
| } | |||
| const vector<int64_t> output_size_list = ModelUtils::GetOutputSize(op_desc); | |||
| int output_index = ge::AnchorUtils::GetIdx(peer_out_anchor); | |||
| auto tensor_desc = op_desc->GetOutputDescPtr(output_index); | |||
| GE_CHECK_NOTNULL(tensor_desc); | |||
| int64_t data_size = 0; | |||
| if (TensorUtils::GetTensorSizeInBytes(*tensor_desc, data_size) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Get tensor size in bytes failed."); | |||
| return FAILED; | |||
| Status DavinciModel::GetRealOutputSizeOfCase(const ComputeGraphPtr &graph, size_t input_index, | |||
| const NodePtr &case_node) { | |||
| GELOGD("Start get output size of %s, which is %zu input to netoutput.", case_node->GetName().c_str(), input_index); | |||
| const auto &func_desc = case_node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(func_desc); | |||
| std::map<vector<int32_t>, int64_t> gear_and_real_out_size_info; | |||
| for (const auto &name : func_desc->GetSubgraphInstanceNames()) { | |||
| const auto &subgraph = graph->GetSubgraph(name); | |||
| if (subgraph == nullptr) { | |||
| GELOGE(GE_GRAPH_EMPTY_SUBGRAPH, "Subgraph not found, name: %s.", name.c_str()); | |||
| return GE_GRAPH_EMPTY_SUBGRAPH; | |||
| } | |||
| for (auto &node : subgraph->GetDirectNode()) { | |||
| if (node->GetType() == NETOUTPUT) { | |||
| auto op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| string batch_label; | |||
| if (AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label)) { | |||
| size_t batch_index = static_cast<size_t>(stoi(batch_label.substr(batch_label.rfind('_') + 1))); | |||
| GELOGD("Batch index of %s is %zu.", op_desc->GetName().c_str(), batch_index); | |||
| if (batch_index > all_gears_info_.size()) { | |||
| GELOGE(PARAM_INVALID, "The value of ATTR_NAME_BATCH_LABEL is invalid."); | |||
| return PARAM_INVALID; | |||
| } | |||
| const vector<int64_t> input_size_list = ModelUtils::GetInputSize(op_desc); | |||
| auto tensor_desc = op_desc->GetInputDescPtr(input_index); | |||
| GE_CHECK_NOTNULL(tensor_desc); | |||
| int64_t data_size = 0; | |||
| if (TensorUtils::GetTensorSizeInBytes(*tensor_desc, data_size) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Get tensor size in bytes failed."); | |||
| return FAILED; | |||
| } | |||
| gear_and_real_out_size_info[all_gears_info_[batch_index]] = data_size; | |||
| GELOGD("Get real gear index is: %zu, gear info is %s, size is %ld, tensor size is %ld", | |||
| batch_index, formats::JoinToString(all_gears_info_[batch_index]).c_str(), | |||
| input_size_list[input_index], data_size); | |||
| } | |||
| break; | |||
| } | |||
| gear_and_real_out_size_info[all_gears_info_[batch_index]] = data_size; | |||
| GELOGD("Get real gear index is: %zu, gear info is %s, size is %ld, tensor size is %ld", | |||
| batch_index, formats::JoinToString(all_gears_info_[batch_index]).c_str(), | |||
| output_size_list[output_index], data_size); | |||
| } | |||
| } | |||
| merge_nodes_gear_and_real_out_size_info_[input_index] = gear_and_real_out_size_info; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetGearAndRealOutShapeInfo(size_t input_count, const OpDescPtr &op_desc) { | |||
| GELOGD("Start to get dynamic output dims of %s.", op_desc->GetName().c_str()); | |||
| Status DavinciModel::GetGearAndRealOutShapeInfo(const ComputeGraphPtr &graph, const NodePtr &node) { | |||
| GELOGD("Start to get dynamic output dims of %s.", node->GetName().c_str()); | |||
| merge_nodes_gear_and_real_out_shape_info_.clear(); | |||
| std::vector<std::string> dynamic_output_shape_info; | |||
| if (!AttrUtils::GetListStr(op_desc, ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_shape_info)) { | |||
| GELOGD("Can not get dynamic output dims attr"); | |||
| return SUCCESS; | |||
| } | |||
| GELOGI("Dynamic output shape info is %s", formats::JoinToString(dynamic_output_shape_info).c_str()); | |||
| std::vector<vector<int64_t>> dynamic_output_shape; | |||
| ParseDynamicOutShape(dynamic_output_shape_info, dynamic_output_shape); | |||
| // idx: input_index to netoutput | |||
| for (size_t idx = 0; idx < input_count; ++idx) { | |||
| std::map<vector<int64_t>, vector<int64_t>> gear_and_real_out_shape_info; | |||
| for (auto &it : dynamic_output_shape) { | |||
| auto gear_index = static_cast<size_t>(it[0]); | |||
| if (gear_index > all_gears_info_.size()) { | |||
| GELOGE(PARAM_INVALID, "The value of cur index: %zu is invalid.", static_cast<size_t>(it[0])); | |||
| return PARAM_INVALID; | |||
| size_t idx = 0; | |||
| for (const auto &in_anchor : node->GetAllInDataAnchors()) { | |||
| auto peer_out_anchor = in_anchor->GetPeerOutAnchor(); | |||
| if (peer_out_anchor == nullptr) { | |||
| continue; | |||
| } | |||
| auto peer_node = peer_out_anchor->GetOwnerNode(); | |||
| auto op_desc = peer_node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| if ((peer_node->GetType() == CASE) && (op_desc->HasAttr(ATTR_INSERT_BY_MBATCH))) { | |||
| std::vector<std::string> dynamic_output_shape_info; | |||
| if (!AttrUtils::GetListStr(node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_shape_info)) { | |||
| GELOGD("Can not get dynamic output dims attr from %s.", node->GetName().c_str()); | |||
| return SUCCESS; | |||
| } | |||
| GELOGI("Dynamic output shape info is %s", formats::JoinToString(dynamic_output_shape_info).c_str()); | |||
| std::vector<vector<int64_t>> dynamic_output_shape; | |||
| ParseDynamicOutShape(dynamic_output_shape_info, dynamic_output_shape); | |||
| std::map<vector<int32_t>, vector<int64_t>> gear_and_real_out_shape_info; | |||
| for (auto &it : dynamic_output_shape) { | |||
| auto gear_index = static_cast<size_t>(it[0]); | |||
| if (gear_index > all_gears_info_.size()) { | |||
| GELOGE(PARAM_INVALID, "The value of cur index: %zu is invalid.", static_cast<size_t>(it[0])); | |||
| return PARAM_INVALID; | |||
| } | |||
| if (static_cast<size_t>(it[1]) == idx) { | |||
| vector<int64_t> output_shape; | |||
| for (size_t i = 2; i < it.size(); ++i) { | |||
| output_shape.emplace_back(it[i]); | |||
| if (static_cast<size_t>(it[1]) == idx) { | |||
| vector<int64_t> output_shape; | |||
| for (size_t i = 2; i < it.size(); ++i) { | |||
| output_shape.emplace_back(it[i]); | |||
| } | |||
| gear_and_real_out_shape_info[all_gears_info_[gear_index]] = output_shape; | |||
| GELOGD("Get real gear index is: %zu, gear info is %s, output shape is %s.", | |||
| gear_index, formats::JoinToString(all_gears_info_[gear_index]).c_str(), | |||
| formats::JoinToString(output_shape).c_str()); | |||
| } | |||
| gear_and_real_out_shape_info[all_gears_info_[gear_index]] = output_shape; | |||
| GELOGD("Get real gear index is: %zu, gear info is %s, output shape is %s.", | |||
| gear_index, formats::JoinToString(all_gears_info_[gear_index]).c_str(), | |||
| formats::JoinToString(output_shape).c_str()); | |||
| } | |||
| merge_nodes_gear_and_real_out_shape_info_[idx] = gear_and_real_out_shape_info; | |||
| } | |||
| merge_nodes_gear_and_real_out_shape_info_[idx] = gear_and_real_out_shape_info; | |||
| idx++; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| @@ -1760,73 +1782,101 @@ void DavinciModel::GetUserDesignateShapeOrder(std::vector<std::string> &user_inp | |||
| /// @ingroup ge | |||
| /// @brief Get AIPP input info | |||
| /// @param [in] index | |||
| /// @param [out] aipp_info | |||
| /// @param [int] OpDescPtr | |||
| /// @return execute result | |||
| /// | |||
| Status DavinciModel::GetAIPPInfo(uint32_t index, AippConfigInfo &aipp_info) { | |||
| GE_CHK_BOOL_RET_STATUS(index < data_op_list_.size(), PARAM_INVALID, "Index %u is invalid.", index); | |||
| OpDescPtr data_op = data_op_list_[index]; | |||
| if (!data_op->HasAttr(ATTR_NAME_AIPP)) { | |||
| GELOGW("GetAIPPInfo: there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| Status DavinciModel::InitAippInfo(uint32_t index, const OpDescPtr &op_desc) { | |||
| if (!op_desc->HasAttr(ATTR_NAME_AIPP)) { | |||
| GELOGW("there is not AIPP related with index %u.", index); | |||
| return SUCCESS; | |||
| } | |||
| std::unique_ptr<domi::AippOpParams> aipp_params(new (std::nothrow) domi::AippOpParams()); | |||
| GE_CHECK_NOTNULL(aipp_params); | |||
| ge::GeAttrValue::NAMED_ATTRS aipp_attr; | |||
| GE_CHK_BOOL_RET_STATUS(AttrUtils::GetNamedAttrs(data_op, ATTR_NAME_AIPP, aipp_attr), GE_AIPP_NOT_EXIST, | |||
| domi::AippOpParams aipp_params; | |||
| GeAttrValue::NAMED_ATTRS aipp_attr; | |||
| GE_CHK_BOOL_RET_STATUS(AttrUtils::GetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr), GE_AIPP_NOT_EXIST, | |||
| "Data node do not contain param aipp!"); | |||
| GE_CHK_STATUS_RET(OpUtils::ConvertAippParams(aipp_attr, aipp_params.get()), "get aipp params failed"); | |||
| GELOGI("GetAIPPInfo: node data: %s, type: %s, current index: %u, current node related input rank: %u", | |||
| data_op->GetName().c_str(), data_op->GetType().c_str(), index, aipp_params->related_input_rank()); | |||
| GE_CHK_STATUS_RET(OpUtils::ConvertAippParams(aipp_attr, &aipp_params), "get aipp params failed"); | |||
| GELOGI("node data: %s, type: %s, current index: %u, current node related input rank: %u", | |||
| op_desc->GetName().c_str(), op_desc->GetType().c_str(), index, aipp_params.related_input_rank()); | |||
| GE_CHK_STATUS_RET(AippUtils::ConvertAippParams2AippInfo(aipp_params.get(), aipp_info), | |||
| AippConfigInfo aipp_info; | |||
| GE_CHK_STATUS_RET(AippUtils::ConvertAippParams2AippInfo(&aipp_params, aipp_info), | |||
| "convert aipp params to aipp config info failed"); | |||
| aipp_info_list_[index] = aipp_info; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index) { | |||
| GE_CHK_BOOL_RET_STATUS(index < data_op_list_.size(), PARAM_INVALID, "Index %u is invalid.", index); | |||
| // Set default value | |||
| type = DATA_WITHOUT_AIPP; | |||
| aipp_index = 0xFFFFFFFF; // default invalid value | |||
| OpDescPtr data_op = data_op_list_[index]; | |||
| GE_CHECK_NOTNULL(data_op); | |||
| if (!data_op->HasAttr(ATTR_DATA_RELATED_AIPP_MODE)) { | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Get AIPP input info | |||
| /// @param [in] index | |||
| /// @param [out] aipp_info | |||
| /// @return execute result | |||
| /// | |||
| Status DavinciModel::GetAippInfo(uint32_t index, AippConfigInfo &aipp_info) const { | |||
| const auto it = aipp_info_list_.find(index); | |||
| if (it == aipp_info_list_.end()) { | |||
| GELOGW("there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| } | |||
| aipp_info = it->second; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::InitAippType(uint32_t index, const OpDescPtr &op_desc, const map<uint32_t, OpDescPtr> &data_list) { | |||
| if (!op_desc->HasAttr(ATTR_DATA_RELATED_AIPP_MODE)) { | |||
| GELOGW("There is no aipp releated info with index %u.", index); | |||
| return SUCCESS; | |||
| } | |||
| std::string data_mode; | |||
| (void)AttrUtils::GetStr(data_op, ATTR_DATA_RELATED_AIPP_MODE, data_mode); | |||
| // Set default value | |||
| InputAippType aipp_type = DATA_WITHOUT_AIPP; | |||
| string data_mode; | |||
| (void)AttrUtils::GetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, data_mode); | |||
| if (data_mode == "static_aipp") { | |||
| type = DATA_WITH_STATIC_AIPP; | |||
| aipp_type = DATA_WITH_STATIC_AIPP; | |||
| } else if (data_mode == "dynamic_aipp") { | |||
| type = DATA_WITH_DYNAMIC_AIPP; | |||
| aipp_type = DATA_WITH_DYNAMIC_AIPP; | |||
| } else if (data_mode == "dynamic_aipp_conf") { | |||
| type = DYNAMIC_AIPP_NODE; | |||
| aipp_type = DYNAMIC_AIPP_NODE; | |||
| } else { | |||
| GELOGE(ACL_ERROR_GE_AIPP_MODE_INVALID, | |||
| "The info of aipp releated info %s is invalid with index %u.", data_mode.c_str(), index); | |||
| return ACL_ERROR_GE_AIPP_MODE_INVALID; | |||
| } | |||
| if (type == DATA_WITH_DYNAMIC_AIPP) { | |||
| size_t aipp_index = 0xFFFFFFFF; // default invalid value | |||
| if (aipp_type == DATA_WITH_DYNAMIC_AIPP) { | |||
| string releated_name; | |||
| (void)AttrUtils::GetStr(data_op, ATTR_DATA_AIPP_DATA_NAME_MAP, releated_name); | |||
| for (size_t i = 0; i < data_op_list_.size(); ++i) { | |||
| GE_CHECK_NOTNULL(data_op_list_[i]); | |||
| if (data_op_list_[i]->GetName() == releated_name) { | |||
| GELOGI("Find aipp_data [%s] index %zu from index %u", releated_name.c_str(), i, index); | |||
| aipp_index = i; | |||
| (void)AttrUtils::GetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, releated_name); | |||
| for (const auto item : data_list) { | |||
| if (item.second->GetName() == releated_name) { | |||
| GELOGI("Find aipp_data [%s] index %zu from index %u", releated_name.c_str(), item.first, index); | |||
| aipp_index = item.first; | |||
| } | |||
| } | |||
| if (aipp_index == 0xFFFFFFFF) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "Can not find aipp data node from index %u", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| GELOGW("Can not find aipp data node from index %u", index); | |||
| return SUCCESS; | |||
| } | |||
| } | |||
| aipp_type_list_[index] = { aipp_type, aipp_index }; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetAippType(uint32_t index, InputAippType &aipp_type, size_t &aipp_index) const { | |||
| const auto it = aipp_type_list_.find(index); | |||
| if (it == aipp_type_list_.end()) { | |||
| GELOGW("There is no aipp releated info with index %u.", index); | |||
| return SUCCESS; | |||
| } | |||
| aipp_type = it->second.first; | |||
| aipp_index = it->second.second; | |||
| return SUCCESS; | |||
| } | |||
| @@ -1842,7 +1892,7 @@ void DavinciModel::SetDynamicSize(const std::vector<uint64_t> &batch_num, int32_ | |||
| dynamic_type_ = dynamic_type; | |||
| } | |||
| void DavinciModel::GetCurShape(std::vector<int64_t> &batch_info, int32_t &dynamic_type) { | |||
| void DavinciModel::GetCurShape(std::vector<int64_t> &batch_info, int32_t &dynamic_type) const { | |||
| if (batch_size_.empty()) { | |||
| GELOGD("User does not set dynamic size"); | |||
| } | |||
| @@ -1854,38 +1904,10 @@ void DavinciModel::GetCurShape(std::vector<int64_t> &batch_info, int32_t &dynami | |||
| dynamic_type = dynamic_type_; | |||
| } | |||
| void DavinciModel::GetModelAttr(vector<string> &out_shape_info) { | |||
| void DavinciModel::GetModelAttr(vector<string> &out_shape_info) const { | |||
| out_shape_info.insert(out_shape_info.end(), dynamic_output_shape_info_.begin(), dynamic_output_shape_info_.end()); | |||
| } | |||
| Status DavinciModel::GetInputOutputDescInfoForZeroCopy(vector<InputOutputDescInfo> &input_desc, | |||
| vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<uint32_t> &input_formats, | |||
| std::vector<uint32_t> &output_formats) { | |||
| if (input_addrs_list_.empty() || input_addrs_list_[0].size() != kOutputNum) { | |||
| GELOGE(FAILED, "OP List Pointer is null or input_desc size is not 1!"); | |||
| return FAILED; | |||
| } | |||
| GE_CHK_STATUS_RET(GetInputDescInfo(input_desc, input_formats), "get input desc info failed"); | |||
| GE_CHK_STATUS_RET(GetOutputDescInfo(output_desc, output_formats), "get ouput desc info failed"); | |||
| GE_CHK_BOOL_RET_STATUS(output_desc.size() == output_memory_size_list_.size(), INTERNAL_ERROR, | |||
| "output_desc size[%zu] not equal output_size_list_[%zu] size!", output_desc.size(), | |||
| output_memory_size_list_.size()); | |||
| /// For function zero copy,the momery should be aligned by 512 bytes. | |||
| /// And, because of the cce op limit, size should be lager than the real shape size. The memory should be padded by 32 | |||
| /// bytes. | |||
| /// *size equals to ((tensorDesc->dataSize + 2 * 32 - 1) / 32) * 32; | |||
| for (size_t i = 0; i < output_memory_size_list_.size(); i++) { | |||
| output_desc[i].size = output_memory_size_list_[i]; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| void DavinciModel::SetInputDimsInfo(const vector<int64_t> &model_input_dims, Format &format, | |||
| InputOutputDescInfo &input) { | |||
| uint32_t n, c, h, w; | |||
| @@ -1935,24 +1957,30 @@ void DavinciModel::CreateInputDimsInfo(const OpDescPtr &op_desc, Format format, | |||
| } | |||
| } | |||
| Status DavinciModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats) { | |||
| for (size_t index = 0; index < data_op_list_.size(); ++index) { | |||
| InputOutputDescInfo input; | |||
| GE_CHECK_NOTNULL(data_op_list_[index]); | |||
| GE_CHECK_NOTNULL(data_op_list_[index]->GetInputDescPtr(0)); | |||
| Status DavinciModel::InitInputDescInfo(const map<uint32_t, OpDescPtr> &data_by_index) { | |||
| for (const auto &item : data_by_index) { | |||
| const auto op_desc = item.second; | |||
| GE_CHECK_NOTNULL(op_desc->GetInputDescPtr(0)); | |||
| Format format = data_op_list_[index]->GetInputDescPtr(0)->GetFormat(); | |||
| CreateInputDimsInfo(data_op_list_[index], format, input); | |||
| InputOutputDescInfo input; | |||
| Format format = op_desc->GetInputDescPtr(0)->GetFormat(); | |||
| CreateInputDimsInfo(op_desc, format, input); | |||
| input.data_type = data_op_list_[index]->GetInputDescPtr(0)->GetDataType(); | |||
| input.name = data_op_list_[index]->GetName(); | |||
| input.data_type = op_desc->GetInputDescPtr(0)->GetDataType(); | |||
| input.name = op_desc->GetName(); | |||
| int64_t input_size = 0; | |||
| GE_CHK_STATUS_RET(TensorUtils::GetSize(*data_op_list_[index]->GetInputDescPtr(0), input_size), | |||
| "get input size failed."); | |||
| GE_CHK_STATUS_RET(TensorUtils::GetSize(*op_desc->GetInputDescPtr(0), input_size), "get input size failed."); | |||
| input.size = input_size; | |||
| formats.push_back(format); | |||
| input_desc.push_back(input); | |||
| input_formats_.push_back(format); | |||
| input_descs_.push_back(input); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_descs, vector<uint32_t> &input_formats) { | |||
| input_descs.insert(input_descs.end(), input_descs_.begin(), input_descs_.end()); | |||
| input_formats.insert(input_formats.end(), input_formats_.begin(), input_formats_.end()); | |||
| // cause GetInputDescInfo called not only once, set is_new_model_desc_ to false after calc the model input dims | |||
| is_new_model_desc_ = false; | |||
| return SUCCESS; | |||
| @@ -1962,7 +1990,7 @@ void DavinciModel::CreateOutput(uint32_t index, const OpDescPtr &op_desc, InputO | |||
| uint32_t &format_result) { | |||
| /// netoutput input tensor desc | |||
| GE_IF_BOOL_EXEC(op_desc->GetInputDescPtr(index) == nullptr, GELOGE(FAILED, "OpDesc GetInputDescPtr is nullptr"); | |||
| return ); | |||
| return); | |||
| Format format = op_desc->GetInputDescPtr(index)->GetFormat(); | |||
| GeShape shape = op_desc->GetInputDescPtr(index)->GetShape(); | |||
| DataType data_type = op_desc->GetInputDescPtr(index)->GetDataType(); | |||
| @@ -2011,8 +2039,7 @@ void DavinciModel::CreateOutput(uint32_t index, const OpDescPtr &op_desc, InputO | |||
| output.data_type = op_desc->GetInputDescPtr(index)->GetDataType(); | |||
| } | |||
| Status DavinciModel::InitOutputDescInfo(const vector<OpDescPtr> &output_op_list, | |||
| vector<InputOutputDescInfo> &output_descs, vector<uint32_t> &output_formats) { | |||
| Status DavinciModel::InitOutputDescInfo(const vector<OpDescPtr> &output_op_list) { | |||
| GELOGD("Output node size: %zu", output_op_list.size()); | |||
| for (const auto &op_desc : output_op_list) { | |||
| uint32_t out_size = static_cast<uint32_t>(op_desc->GetInputsSize()); | |||
| @@ -2037,28 +2064,20 @@ Status DavinciModel::InitOutputDescInfo(const vector<OpDescPtr> &output_op_list, | |||
| std::to_string(src_index[index]); | |||
| } | |||
| output.name = output_name; | |||
| output_descs.push_back(output); | |||
| output_formats.push_back(format_result); | |||
| output_descs_.push_back(output); | |||
| output_formats_.push_back(format_result); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_descs, vector<uint32_t> &output_formats) { | |||
| Status DavinciModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_descs, | |||
| vector<uint32_t> &output_formats) const { | |||
| output_descs.insert(output_descs.end(), output_descs_.begin(), output_descs_.end()); | |||
| output_formats.insert(output_formats.end(), output_formats_.begin(), output_formats_.end()); | |||
| return SUCCESS; | |||
| } | |||
| ge::Format DavinciModel::GetFormat() { | |||
| if ((data_op_list_.empty()) || data_op_list_[0] == nullptr || data_op_list_[0]->GetInputDescPtr(0) == nullptr) { | |||
| GELOGW("OP List Pointer is null or input_desc size is not 1!"); | |||
| return FORMAT_NCHW; | |||
| } | |||
| return data_op_list_[0]->GetInputDescPtr(0)->GetFormat(); | |||
| } | |||
| Status DavinciModel::CopyInputData(const InputData &input_data, bool device_data) { | |||
| rtMemcpyKind_t kind = device_data ? RT_MEMCPY_DEVICE_TO_DEVICE : RT_MEMCPY_HOST_TO_DEVICE; | |||
| const std::vector<DataBuffer> &blobs = input_data.blobs; | |||
| @@ -2567,7 +2586,7 @@ Status DavinciModel::ReturnResult(uint32_t data_id, const bool rslt_flg, const b | |||
| GELOGD("Reinit cur dynamic dims when getnext sink dynamic."); | |||
| cur_dynamic_dims_.clear(); | |||
| cur_dynamic_dims_.resize(shape_of_cur_dynamic_dims_); | |||
| auto ret = rtMemcpy(cur_dynamic_dims_.data(), shape_of_cur_dynamic_dims_ * sizeof(int64_t), | |||
| auto ret = rtMemcpy(cur_dynamic_dims_.data(), shape_of_cur_dynamic_dims_ * sizeof(int32_t), | |||
| netoutput_last_input_addr_, netoutput_last_input_size_, RT_MEMCPY_DEVICE_TO_HOST); | |||
| GE_CHK_RT_RET(ret); | |||
| } | |||
| @@ -2668,11 +2687,11 @@ void *DavinciModel::Run(DavinciModel *model) { | |||
| GE_IF_BOOL_EXEC(current_data.blobs.empty(), break); | |||
| auto shape_data_buffer_data = current_data.blobs.back().data; | |||
| auto shape_data_buffer_length = current_data.blobs.back().length; | |||
| model->cur_dynamic_dims_.assign(reinterpret_cast<int64_t *>(shape_data_buffer_data), | |||
| reinterpret_cast<int64_t *>(shape_data_buffer_data) + | |||
| shape_data_buffer_length / sizeof(int64_t)); | |||
| model->cur_dynamic_dims_.assign(reinterpret_cast<int32_t *>(shape_data_buffer_data), | |||
| reinterpret_cast<int32_t *>(shape_data_buffer_data) + | |||
| shape_data_buffer_length / sizeof(int32_t)); | |||
| GELOGD("Data: cur dynamic dims is %s", formats::JoinToString(model->cur_dynamic_dims_).c_str()); | |||
| delete[] reinterpret_cast<int64_t *>(current_data.blobs.back().data); | |||
| delete[] reinterpret_cast<int32_t *>(current_data.blobs.back().data); | |||
| current_data.blobs.pop_back(); | |||
| } | |||
| GE_IF_BOOL_EXEC(ProfilingManager::Instance().ProfilingModelExecuteOn(), model->SetProfileTime(MODEL_PRE_PROC_END)); | |||
| @@ -3082,6 +3101,8 @@ Status DavinciModel::DistributeTask() { | |||
| task_desc_info.stream_id = task->GetStreamId(); | |||
| task_desc_info.shape_type = "static"; | |||
| task_desc_info.cur_iter_num = 0; | |||
| profiler_report_op_info_[task_desc_info.op_name] = | |||
| std::pair<uint32_t, uint32_t>(task_desc_info.task_id, task_desc_info.stream_id); | |||
| task_desc_info_.emplace_back(task_desc_info); | |||
| if (flag) { | |||
| if (task->GetSktTaskID() != 0xFFFFFFFF) { | |||
| @@ -3089,6 +3110,8 @@ Status DavinciModel::DistributeTask() { | |||
| string op_name = "super_kernel_" + to_string(task_index); | |||
| task_desc_info.op_name = op_name; | |||
| task_desc_info.task_id = task->GetSktTaskID(); | |||
| profiler_report_op_info_[task_desc_info.op_name] = | |||
| std::pair<uint32_t, uint32_t>(task_desc_info.task_id, task_desc_info.stream_id); | |||
| task_desc_info_.emplace_back(task_desc_info); | |||
| } | |||
| } | |||
| @@ -3960,7 +3983,15 @@ Status DavinciModel::GetComputeGraphInfo(vector<ComputeGraphDescInfo> &graph_des | |||
| compute_graph_info.output_format = op_desc.output_format; | |||
| compute_graph_info.output_shape = op_desc.output_shape; | |||
| compute_graph_info.output_data_type = op_desc.output_data_type; | |||
| uint32_t task_id = 0; | |||
| uint32_t stream_id = 0; | |||
| auto iter = profiler_report_op_info_.find(op_desc.op_name); | |||
| if (iter != profiler_report_op_info_.end()) { | |||
| task_id = iter->second.first; | |||
| stream_id = iter->second.second; | |||
| } | |||
| compute_graph_info.task_id = task_id; | |||
| compute_graph_info.stream_id = stream_id; | |||
| graph_desc_info.emplace_back(compute_graph_info); | |||
| } | |||
| return SUCCESS; | |||
| @@ -3973,25 +4004,45 @@ void DavinciModel::SetTotalFixedAddrsSize(string tensor_name, int64_t fix_addr_s | |||
| } | |||
| } | |||
| Status DavinciModel::GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) { | |||
| GE_CHK_BOOL_RET_STATUS(index < data_op_list_.size(), PARAM_INVALID, "Index %u is invalid.", index); | |||
| OpDescPtr data_op = data_op_list_[index]; | |||
| if (!data_op->HasAttr(ATTR_NAME_AIPP_INPUTS) || !data_op->HasAttr(ATTR_NAME_AIPP_OUTPUTS)) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "GetOrigInputInfo: there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| Status DavinciModel::InitOrigInputInfo(uint32_t index, const OpDescPtr &op_desc) { | |||
| if (!op_desc->HasAttr(ATTR_NAME_AIPP_INPUTS) || !op_desc->HasAttr(ATTR_NAME_AIPP_OUTPUTS)) { | |||
| GELOGI("there is not AIPP related with index %u, node: %s.", index, op_desc->GetName().c_str()); | |||
| return SUCCESS; | |||
| } | |||
| vector<std::string> inputs; | |||
| if (AttrUtils::GetListStr(data_op, ATTR_NAME_AIPP_INPUTS, inputs) && !inputs.empty()) { | |||
| vector<string> inputs; | |||
| if (AttrUtils::GetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs) && !inputs.empty()) { | |||
| std::string input = inputs[kAippOriginInputIndex]; | |||
| GELOGI("GetOrigInputInfo: origin input str: %s", input.c_str()); | |||
| GELOGI("origin input str: %s", input.c_str()); | |||
| std::vector<std::string> infos = ge::StringUtils::Split(input, ':'); | |||
| if (infos.size() != kAippInfoNum) { | |||
| GELOGW("origin input str is invalid."); | |||
| GELOGE(ACL_ERROR_GE_AIPP_MODE_INVALID, "origin input str is invalid[%zu, %u].", infos.size(), kAippInfoNum); | |||
| return ACL_ERROR_GE_AIPP_MODE_INVALID; | |||
| } | |||
| orig_input_info.format = TypeUtils::SerialStringToFormat(infos[kAippInfoFormat]); | |||
| orig_input_info.data_type = TypeUtils::SerialStringToDataType(infos[kAippInfoDataType]); | |||
| orig_input_info.dim_num = std::strtol(infos[kAippInfoDimNum].c_str(), nullptr, kDecimal); | |||
| OriginInputInfo input_info; | |||
| input_info.format = TypeUtils::SerialStringToFormat(infos[kAippInfoFormat]); | |||
| input_info.data_type = TypeUtils::SerialStringToDataType(infos[kAippInfoDataType]); | |||
| input_info.dim_num = std::strtol(infos[kAippInfoDimNum].c_str(), nullptr, kDecimal); | |||
| orig_input_info_[index] = input_info; | |||
| } else { | |||
| OriginInputInfo input_info = { FORMAT_RESERVED, DT_UNDEFINED, 0 }; | |||
| orig_input_info_[index] = input_info; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) const { | |||
| const auto it = orig_input_info_.find(index); | |||
| if (it == orig_input_info_.end()) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| } | |||
| const OriginInputInfo &input_info = it->second; | |||
| if (input_info.format != FORMAT_RESERVED || input_info.data_type != DT_UNDEFINED) { | |||
| orig_input_info = input_info; | |||
| } | |||
| return SUCCESS; | |||
| @@ -4001,7 +4052,8 @@ void DavinciModel::ParseAIPPInfo(std::string in_out_info, InputOutputDims &dims_ | |||
| GELOGI("ParseAIPPInfo: origin str: %s", in_out_info.c_str()); | |||
| std::vector<std::string> infos = ge::StringUtils::Split(in_out_info, ':'); | |||
| if (infos.size() != kAippInfoNum) { | |||
| GELOGW("origin input str is invalid."); | |||
| GELOGE(ACL_ERROR_GE_AIPP_MODE_INVALID, "origin input str is invalid[%zu, %u].", infos.size(), kAippInfoNum); | |||
| return; | |||
| } | |||
| dims_info.name = infos[kAippInfoTensorName]; | |||
| dims_info.size = std::strtol(infos[kAippInfoTensorSize].c_str(), nullptr, kDecimal); | |||
| @@ -4016,47 +4068,58 @@ void DavinciModel::ParseAIPPInfo(std::string in_out_info, InputOutputDims &dims_ | |||
| } | |||
| } | |||
| Status DavinciModel::GetAllAippInputOutputDims(uint32_t index, std::vector<InputOutputDims> &input_dims, | |||
| std::vector<InputOutputDims> &output_dims) { | |||
| GE_CHK_BOOL_RET_STATUS(index < data_op_list_.size(), PARAM_INVALID, "Index %u is invalid.", index); | |||
| OpDescPtr data_op = data_op_list_[index]; | |||
| if (!data_op->HasAttr(ATTR_NAME_AIPP_INPUTS) || !data_op->HasAttr(ATTR_NAME_AIPP_OUTPUTS)) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "GetAllAippInputOutputDims: there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| Status DavinciModel::InitAippInputOutputDims(uint32_t index, const OpDescPtr &op_desc) { | |||
| if (!op_desc->HasAttr(ATTR_NAME_AIPP_INPUTS) || !op_desc->HasAttr(ATTR_NAME_AIPP_OUTPUTS)) { | |||
| GELOGI("there is not AIPP related with index %u.", index); | |||
| return SUCCESS; | |||
| } | |||
| vector<std::string> inputs; | |||
| if (AttrUtils::GetListStr(data_op, ATTR_NAME_AIPP_INPUTS, inputs) && !inputs.empty()) { | |||
| GELOGI("GetAllAippInputOutputDims: Data: %s has %zu related aippInfo.", data_op->GetName().c_str(), inputs.size()); | |||
| vector<string> inputs; | |||
| vector<InputOutputDims> input_dims; | |||
| if (AttrUtils::GetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs) && !inputs.empty()) { | |||
| GELOGI("Data: %s has %zu related aippInfo.", op_desc->GetName().c_str(), inputs.size()); | |||
| for (auto it : inputs) { | |||
| InputOutputDims input_info; | |||
| ParseAIPPInfo(it, input_info); | |||
| input_dims.emplace_back(input_info); | |||
| GELOGD("GetAllAippInputOutputDims Aipp origin input dims info: %s", it.c_str()); | |||
| GELOGD("Aipp origin input dims info: %s", it.c_str()); | |||
| ConstGeTensorDescPtr data_input_desc = data_op->GetInputDescPtr(kDataIndex); | |||
| ConstGeTensorDescPtr data_input_desc = op_desc->GetInputDescPtr(kDataIndex); | |||
| int64_t data_input_size; | |||
| (void)TensorUtils::GetSize(*(data_op->GetInputDescPtr(kDataIndex)), data_input_size); | |||
| GELOGD( | |||
| "GetAllAippInputOutputDims related Data[%d]: tensor_name is %s, dim_num is %zu, tensor_size: %zu, format: " | |||
| "%s, data_type: %s, shape: %s .", | |||
| index, data_op->GetName().c_str(), data_input_desc->GetShape().GetDimNum(), data_input_size, | |||
| TypeUtils::FormatToSerialString(data_input_desc->GetFormat()).c_str(), | |||
| TypeUtils::DataTypeToSerialString(data_input_desc->GetDataType()).c_str(), | |||
| formats::JoinToString(data_input_desc->GetShape().GetDims()).c_str()); | |||
| (void)TensorUtils::GetSize(*(op_desc->GetInputDescPtr(kDataIndex)), data_input_size); | |||
| GELOGD("related Data[%d]: tensor_name: %s, dim_num: %zu, tensor_size: %zu, format: %s, data_type: %s, shape: %s", | |||
| index, op_desc->GetName().c_str(), data_input_desc->GetShape().GetDimNum(), data_input_size, | |||
| TypeUtils::FormatToSerialString(data_input_desc->GetFormat()).c_str(), | |||
| TypeUtils::DataTypeToSerialString(data_input_desc->GetDataType()).c_str(), | |||
| formats::JoinToString(data_input_desc->GetShape().GetDims()).c_str()); | |||
| } | |||
| } | |||
| vector<std::string> outputs; | |||
| if (AttrUtils::GetListStr(data_op, ATTR_NAME_AIPP_OUTPUTS, outputs) && !outputs.empty()) { | |||
| vector<string> outputs; | |||
| vector<InputOutputDims> output_dims; | |||
| if (AttrUtils::GetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs) && !outputs.empty()) { | |||
| for (auto it : outputs) { | |||
| InputOutputDims output_info; | |||
| ParseAIPPInfo(it, output_info); | |||
| output_dims.emplace_back(output_info); | |||
| GELOGD("GetAllAippInputOutputDims Aipp output dims info: %s", it.c_str()); | |||
| GELOGD("Aipp output dims info: %s", it.c_str()); | |||
| } | |||
| } | |||
| aipp_dims_info_[index] = { input_dims, input_dims }; | |||
| return SUCCESS; | |||
| } | |||
| Status DavinciModel::GetAllAippInputOutputDims(uint32_t index, vector<InputOutputDims> &input_dims, | |||
| vector<InputOutputDims> &output_dims) const { | |||
| const auto it = aipp_dims_info_.find(index); | |||
| if (it == aipp_dims_info_.end()) { | |||
| GELOGE(ACL_ERROR_GE_AIPP_NOT_EXIST, "there is not AIPP related with index %u.", index); | |||
| return ACL_ERROR_GE_AIPP_NOT_EXIST; | |||
| } | |||
| input_dims = it->second.first; | |||
| output_dims = it->second.second; | |||
| return SUCCESS; | |||
| } | |||
| @@ -286,13 +286,6 @@ class DavinciModel { | |||
| // Modified from KernelTaskInfo. | |||
| SuperKernelTaskInfo &GetSuperKernelTaskInfo() { return skt_info_; } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief get model input and output format | |||
| /// @return ccTensorFormat_t current model input and output format | |||
| /// | |||
| Format GetFormat(); | |||
| rtModel_t GetRtModelHandle() const { return rt_model_handle_; } | |||
| rtStream_t GetRtModelStream() const { return rt_model_stream_; } | |||
| @@ -326,7 +319,7 @@ class DavinciModel { | |||
| Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc); | |||
| Status GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<InputOutputDescInfo> &output_desc, | |||
| vector<uint32_t> &inputFormats, vector<uint32_t> &output_formats); | |||
| vector<uint32_t> &input_formats, vector<uint32_t> &output_formats); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -347,9 +340,9 @@ class DavinciModel { | |||
| void GetUserDesignateShapeOrder(vector<string> &user_input_shape_order) const; | |||
| void GetCurShape(vector<int64_t> &batch_info, int32_t &dynamic_type); | |||
| void GetCurShape(vector<int64_t> &batch_info, int32_t &dynamic_type) const; | |||
| void GetModelAttr(vector<string> &dynamic_output_shape_info); | |||
| void GetModelAttr(vector<string> &dynamic_output_shape_info) const; | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -358,9 +351,9 @@ class DavinciModel { | |||
| /// @param [out] aipp_info | |||
| /// @return execute result | |||
| /// | |||
| Status GetAIPPInfo(uint32_t index, AippConfigInfo &aipp_info); | |||
| Status GetAippInfo(uint32_t index, AippConfigInfo &aipp_info) const; | |||
| Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index); | |||
| Status GetAippType(uint32_t index, InputAippType &type, size_t &aipp_index) const; | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -378,17 +371,6 @@ class DavinciModel { | |||
| /// | |||
| void GetUniqueId(const OpDescPtr &op_desc, string &unique_identification); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief get model input and output desc for zero copy | |||
| /// @param [out] input_shape model input size | |||
| /// @param [out] output_shape model output size | |||
| /// @return execute result | |||
| /// | |||
| Status GetInputOutputDescInfoForZeroCopy(vector<InputOutputDescInfo> &input_desc, | |||
| vector<InputOutputDescInfo> &output_desc, | |||
| vector<uint32_t> &inputFormats, vector<uint32_t> &output_formats); | |||
| Status ReturnResult(uint32_t data_id, const bool rslt_flg, const bool seq_end_flg, OutputData *output_data); | |||
| Status ReturnNoOutput(uint32_t data_id); | |||
| @@ -538,9 +520,9 @@ class DavinciModel { | |||
| Status UpdateKnownZeroCopyAddr(vector<void *> &total_io_addrs, bool update_args = true); | |||
| void SetKnownNodeAddrNotChanged(bool base_addr_not_changed) { base_addr_not_changed_ = base_addr_not_changed; } | |||
| Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info); | |||
| Status GetOrigInputInfo(uint32_t index, OriginInputInfo &orig_input_info) const; | |||
| Status GetAllAippInputOutputDims(uint32_t index, vector<InputOutputDims> &input_dims, | |||
| vector<InputOutputDims> &output_dims); | |||
| vector<InputOutputDims> &output_dims) const; | |||
| void SetModelDescVersion(bool is_new_model_desc) { is_new_model_desc_ = is_new_model_desc; } | |||
| // om file name | |||
| void SetOmName(string om_name) { om_name_ = om_name; } | |||
| @@ -626,7 +608,7 @@ class DavinciModel { | |||
| void SetInputDimsInfo(const vector<int64_t> &model_input_dims, Format &format, InputOutputDescInfo &input); | |||
| Status GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, vector<uint32_t> &input_formats); | |||
| Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, vector<uint32_t> &output_formats); | |||
| Status GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, vector<uint32_t> &output_formats) const; | |||
| Status InitTaskInfo(domi::ModelTaskDef &modelTaskInfo); | |||
| @@ -688,7 +670,7 @@ class DavinciModel { | |||
| /// @param [in] output_op_list: list of NetOutput op. | |||
| /// @return Status | |||
| /// | |||
| Status OptInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, const vector<OpDescPtr> &output_op_list); | |||
| Status GenInputOutputInfo(const map<uint32_t, OpDescPtr> &data_by_index, const vector<OpDescPtr> &output_op_list); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -856,19 +838,26 @@ class DavinciModel { | |||
| Status InitOutputTensorInfo(const OpDescPtr &op_desc); | |||
| Status GenOutputTensorInfo(OutputData *output_data, vector<OutputTensorInfo> &outputs); | |||
| Status InitOutputDescInfo(const vector<OpDescPtr> &output_op_list, | |||
| vector<InputOutputDescInfo> &output_desc, vector<uint32_t> &formats); | |||
| Status InitInputDescInfo(const map<uint32_t, OpDescPtr> &data_by_index); | |||
| Status InitOutputDescInfo(const vector<OpDescPtr> &output_op_list); | |||
| Status InitOrigInputInfo(uint32_t index, const OpDescPtr &op_desc); | |||
| Status InitAippInfo(uint32_t index, const OpDescPtr &op_desc); | |||
| Status InitAippType(uint32_t index, const OpDescPtr &op_desc, const map<uint32_t, OpDescPtr> &data_list); | |||
| Status InitAippInputOutputDims(uint32_t index, const OpDescPtr &op_desc); | |||
| void ParseAIPPInfo(string in_out_info, InputOutputDims &dims_info); | |||
| void SetLabelForDynamic(const NodePtr &node); | |||
| void ParseDynamicOutShape(const vector<string> &str_info, vector<vector<int64_t>> &vec_info); | |||
| bool IsGetNextSinkDynamic(const OpDescPtr &op_desc); | |||
| Status InitRealSizeAndShapeInfo(const ComputeGraphPtr &compute_graph, const NodePtr &node); | |||
| void GetAllGearsInfo(const NodePtr &node); | |||
| Status GetGetDynamicDimsNodeInfo(const NodePtr &node); | |||
| Status GetGearAndRealOutSizeInfo(size_t input_count, const NodePtr &node); | |||
| Status GetRealOutputSizeOfMerge(size_t input_index, const NodePtr &merge_node); | |||
| Status GetGearAndRealOutShapeInfo(size_t input_count, const OpDescPtr &op_desc); | |||
| Status GetGearAndRealOutSizeInfo(const ComputeGraphPtr &graph, const NodePtr &node); | |||
| Status GetRealOutputSizeOfCase(const ComputeGraphPtr &graph, size_t input_index, const NodePtr &case_node); | |||
| Status GetGearAndRealOutShapeInfo(const ComputeGraphPtr &graph, const NodePtr &node); | |||
| bool is_weight_mem_has_inited_; | |||
| bool is_feature_map_mem_has_inited_; | |||
| @@ -888,9 +877,6 @@ class DavinciModel { | |||
| map<uint32_t, OpDescPtr> op_list_; // release after DavinciModel::Init | |||
| // data op_desc | |||
| vector<OpDescPtr> data_op_list_; | |||
| vector<OpDescPtr> variable_op_list_; | |||
| map<uint32_t, ZeroCopyOffset> new_input_data_info_; | |||
| @@ -976,6 +962,8 @@ class DavinciModel { | |||
| // for profiling task and graph info | |||
| vector<TaskDescInfo> task_desc_info_; | |||
| std::map<std::string, std::pair<uint32_t, uint32_t>> profiler_report_op_info_; | |||
| int64_t maxDumpOpNum_; | |||
| // for data dump | |||
| DataDumper data_dumper_; | |||
| @@ -1021,15 +1009,15 @@ class DavinciModel { | |||
| bool is_new_model_desc_{false}; | |||
| bool is_online_infer_dynamic_ = false; | |||
| bool is_getnext_sink_dynamic_ = false; | |||
| vector<int64_t> cur_dynamic_dims_; | |||
| vector<int32_t> cur_dynamic_dims_; | |||
| void *netoutput_last_input_addr_ = nullptr; | |||
| int64_t netoutput_last_input_size_ = 0; | |||
| size_t shape_of_cur_dynamic_dims_ = 0; | |||
| // key: input_index: input is merge node; value: each gear info and each output size | |||
| map<size_t, map<vector<int64_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_; | |||
| map<size_t, map<vector<int32_t>, int64_t>> merge_nodes_gear_and_real_out_size_info_; | |||
| // key: input_index: input is merge node; value: each gear info and each output shape | |||
| map<size_t, map<vector<int64_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_; | |||
| vector<vector<int64_t>> all_gears_info_; | |||
| map<size_t, map<vector<int32_t>, vector<int64_t>>> merge_nodes_gear_and_real_out_shape_info_; | |||
| vector<vector<int32_t>> all_gears_info_; | |||
| multimap<uint32_t, uint32_t> op_id_map_; | |||
| vector<ProfileInfo> profile_list_; | |||
| @@ -1046,6 +1034,13 @@ class DavinciModel { | |||
| vector<int64_t> output_buffer_size_; | |||
| vector<GeShape> output_shape_info_; | |||
| map<uint32_t, OriginInputInfo> orig_input_info_; | |||
| map<uint32_t, AippConfigInfo> aipp_info_list_; | |||
| map<uint32_t, pair<InputAippType, size_t>> aipp_type_list_; | |||
| map<uint32_t, pair<vector<InputOutputDims>, vector<InputOutputDims>>> aipp_dims_info_; | |||
| vector<InputOutputDescInfo> input_descs_; | |||
| vector<uint32_t> input_formats_; | |||
| vector<InputOutputDescInfo> output_descs_; | |||
| vector<uint32_t> output_formats_; | |||
| }; | |||
| @@ -16,82 +16,7 @@ | |||
| #include "graph/load/new_model_manager/davinci_model_parser.h" | |||
| #include <fstream> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "securec.h" | |||
| #include "common/debug/log.h" | |||
| #include "graph/load/new_model_manager/davinci_model.h" | |||
| namespace ge { | |||
| FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status ModelInfoParser(const ModelData &model, ModelInfo &model_info) { | |||
| GE_CHK_RT_RET(rtSetDevice(0)); | |||
| try { | |||
| uint32_t model_len = 0; | |||
| uint8_t *model_data = nullptr; | |||
| Status ret = DavinciModelParser::ParseModelContent(model, model_data, model_len); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, GE_CHK_RT(rtDeviceReset(0)); return ret, "Parse model failed"); | |||
| auto *file_header = reinterpret_cast<ModelFileHeader *>(model.model_data); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(file_header == nullptr, GE_CHK_RT(rtDeviceReset(0)); | |||
| return PARAM_INVALID, "file_header is null."); | |||
| model_info.version = file_header->version; | |||
| model_info.is_encrypt = false; | |||
| GE_IF_BOOL_EXEC(ENCRYPTED == file_header->is_encrypt, model_info.is_encrypt = true); | |||
| std::shared_ptr<DavinciModel> davinci_model = | |||
| std::shared_ptr<DavinciModel>(new (std::nothrow) DavinciModel(model.priority, nullptr)); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(davinci_model == nullptr, GE_CHK_RT(rtDeviceReset(0)); | |||
| return PARAM_INVALID, "davinci_model is null."); | |||
| GE_MAKE_GUARD(davinci_model, [&] { davinci_model = nullptr; }); | |||
| ModelHelper model_helper; | |||
| ret = model_helper.LoadModel(model); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG((ret != SUCCESS), GE_CHK_RT(rtDeviceReset(0)); return FAILED, "load model failed"); | |||
| ret = davinci_model->Assign(model_helper.GetGeModel()); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, GE_CHK_RT(rtDeviceReset(0)); | |||
| return ret, "Parse davinci model data failed"); | |||
| ret = davinci_model->Init(); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, GE_CHK_RT(rtDeviceReset(0)); | |||
| return ret, "Davinci model init failed"); | |||
| vector<InputOutputDescInfo> input_list; | |||
| vector<InputOutputDescInfo> output_list; | |||
| ret = davinci_model->GetInputOutputDescInfo(input_list, output_list); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(ret != SUCCESS, GE_CHK_RT(rtDeviceReset(0)); | |||
| return ret, "Davinci model GetInputOutputDescInfo failed"); | |||
| for (const auto &desc : input_list) { | |||
| model_info.input_desc.push_back(desc.shape_info); | |||
| } | |||
| for (const auto &desc : output_list) { | |||
| model_info.output_desc.push_back(desc.shape_info); | |||
| } | |||
| model_info.name = davinci_model->Name(); | |||
| } catch (...) { | |||
| DOMI_LOGE("OM model parser failed, some exceptions occur !"); | |||
| GE_CHK_RT(rtDeviceReset(0)); | |||
| return FAILED; | |||
| } | |||
| GE_CHK_RT(rtDeviceReset(0)); | |||
| return SUCCESS; | |||
| } | |||
| DavinciModelParser::DavinciModelParser() {} | |||
| DavinciModelParser::~DavinciModelParser() {} | |||
| @@ -460,8 +460,8 @@ Status ModelManager::DataInput(const InputData &input_data, OutputData &output_d | |||
| Status ModelManager::GetCurDynamicDims(const vector<vector<int64_t>> &user_real_input_dims, | |||
| const vector<pair<string, vector<int64_t>>> &user_input_dims, | |||
| vector<int64_t> &cur_dynamic_dims) { | |||
| GELOGD(" Start get cur dynamic dims."); | |||
| vector<int32_t> &cur_dynamic_dims) { | |||
| GELOGD("Start get cur dynamic dims."); | |||
| if (user_real_input_dims.size() != user_input_dims.size()) { | |||
| GELOGE(INTERNAL_ERROR, | |||
| "The input count of user: %zu should be equal to the data count of graph: %zu", | |||
| @@ -478,7 +478,7 @@ Status ModelManager::GetCurDynamicDims(const vector<vector<int64_t>> &user_real_ | |||
| } | |||
| for (size_t j = 0; j < user_input_dims.at(i).second.size(); ++j) { | |||
| if (user_input_dims.at(i).second.at(j) < 0) { | |||
| cur_dynamic_dims.emplace_back(user_real_input_dims[i][j]); | |||
| cur_dynamic_dims.emplace_back(static_cast<int32_t>(user_real_input_dims[i][j])); | |||
| } | |||
| } | |||
| } | |||
| @@ -523,7 +523,7 @@ Status ModelManager::DataInputTensor(uint32_t model_id, const std::vector<InputT | |||
| input_data.blobs.push_back(data); | |||
| } | |||
| if (!GetLocalOmgContext().user_input_dims.empty() && GetLocalOmgContext().need_multi_batch) { | |||
| std::vector<int64_t> cur_dynamic_dims; | |||
| std::vector<int32_t> cur_dynamic_dims; | |||
| if (!GetLocalOmgContext().user_real_input_dims.empty()) { | |||
| if (GetCurDynamicDims(GetLocalOmgContext().user_real_input_dims, GetLocalOmgContext().user_input_dims, | |||
| cur_dynamic_dims) != SUCCESS) { | |||
| @@ -531,9 +531,9 @@ Status ModelManager::DataInputTensor(uint32_t model_id, const std::vector<InputT | |||
| return INTERNAL_ERROR; | |||
| } | |||
| DataBuffer data; | |||
| data.data = new(std::nothrow) int64_t[cur_dynamic_dims.size()]; | |||
| data.data = new(std::nothrow) int32_t[cur_dynamic_dims.size()]; | |||
| GE_CHECK_NOTNULL(data.data); | |||
| uint64_t length = static_cast<uint64_t>(cur_dynamic_dims.size() * sizeof(int64_t)); | |||
| uint32_t length = static_cast<uint32_t>(cur_dynamic_dims.size() * sizeof(int32_t)); | |||
| GE_CHK_BOOL_EXEC(memcpy_s(data.data, length, cur_dynamic_dims.data(), length) == EOK, return INTERNAL_ERROR, | |||
| "Failed to memcpy data."); | |||
| data.length = length; | |||
| @@ -995,16 +995,6 @@ Status ModelManager::GetModelAttr(uint32_t model_id, std::vector<string> &dynami | |||
| return SUCCESS; | |||
| } | |||
| Status ModelManager::GetInputOutputDescInfoForZeroCopy(const uint32_t model_id, vector<InputOutputDescInfo> &input_desc, | |||
| vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<uint32_t> &inputFormats, | |||
| std::vector<uint32_t> &outputFormats) { | |||
| std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id); | |||
| GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID, | |||
| "GetInputOutputDescInfo Failed, Invalid model id %u!", model_id); | |||
| return davinci_model->GetInputOutputDescInfoForZeroCopy(input_desc, output_desc, inputFormats, outputFormats); | |||
| } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Get AIPP info | |||
| @@ -1013,11 +1003,11 @@ Status ModelManager::GetInputOutputDescInfoForZeroCopy(const uint32_t model_id, | |||
| /// @param [out] aipp_info | |||
| /// @return execute result | |||
| /// | |||
| Status ModelManager::GetAIPPInfo(const uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) { | |||
| Status ModelManager::GetAippInfo(const uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info) { | |||
| std::shared_ptr<DavinciModel> davinci_model = GetModel(model_id); | |||
| GE_CHK_BOOL_RET_STATUS(davinci_model != nullptr, ACL_ERROR_GE_EXEC_MODEL_ID_INVALID, | |||
| "GetAIPPInfo failed, invalid model_id is %u.", model_id); | |||
| return davinci_model->GetAIPPInfo(index, aipp_info); | |||
| return davinci_model->GetAippInfo(index, aipp_info); | |||
| } | |||
| Status ModelManager::GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index) { | |||
| @@ -1568,6 +1558,7 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| GE_CHK_RT(rtFree(mem)); | |||
| } | |||
| }; | |||
| GE_MAKE_GUARD(release, callback); | |||
| // malloc sysOpInfoList in SysOpCheckInfo | |||
| status = rtMalloc(&d_req_op_list, op_nums * sizeof(SysOpInfo), RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| @@ -1580,7 +1571,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtMalloc(&d_res_op_list, op_nums * sizeof(SysOpInfo), RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| allocated_mem.push_back(d_res_op_list); | |||
| @@ -1589,7 +1579,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtMalloc(&d_ret_code_list, op_nums * sizeof(ReturnCode), RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| allocated_mem.push_back(d_ret_code_list); | |||
| @@ -1601,7 +1590,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtMalloc(&d_op_type_name, op_type.length(), RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| allocated_mem.push_back(d_op_type_name); | |||
| @@ -1619,7 +1607,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtMalloc(&d_op_type_name, op_type.size(), RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| allocated_mem.push_back(d_op_type_name); | |||
| @@ -1648,7 +1635,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtMalloc(&args, args_size, RT_MEMORY_HBM); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| allocated_mem.push_back(args); | |||
| @@ -1664,7 +1650,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| status = rtStreamSynchronize(stream); | |||
| if (status != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt stream sync failed, status: 0x%x", status); | |||
| GE_MAKE_GUARD(release, callback); | |||
| GE_CHK_RT(rtStreamDestroy(stream)); | |||
| return RT_ERROR_TO_GE_STATUS(status); | |||
| } | |||
| @@ -1679,7 +1664,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| if (op_check_info_res.isWithoutJson) { | |||
| GELOGI("No need to check aicpu in this scenoria."); | |||
| GE_MAKE_GUARD(release, callback); | |||
| GE_CHK_RT(rtStreamDestroy(stream)); | |||
| return SUCCESS; | |||
| } | |||
| @@ -1698,7 +1682,6 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| sizeof(SysOpInfo) * res_op_nums, RT_MEMCPY_DEVICE_TO_HOST)); | |||
| if (res_ret_code_list.size() != res_aicpu_op_info_list.size() || res_ret_code_list.size() != res_op_nums) { | |||
| GELOGE(FAILED, "Number of retcode is not equal to number of op type."); | |||
| GE_MAKE_GUARD(release, callback); | |||
| GE_CHK_RT(rtStreamDestroy(stream)); | |||
| return FAILED; | |||
| } | |||
| @@ -1722,12 +1705,10 @@ Status ModelManager::LaunchKernelCheckAicpuOp(std::vector<std::string> &aicpu_op | |||
| } | |||
| fail_reason += "not support."; | |||
| GELOGE(FAILED, "Check aicpu op_type failed. details: %s", fail_reason.c_str()); | |||
| GE_MAKE_GUARD(release, callback); | |||
| GE_CHK_RT(rtStreamDestroy(stream)); | |||
| return FAILED; | |||
| } | |||
| GE_MAKE_GUARD(release, callback); | |||
| GE_CHK_RT(rtStreamDestroy(stream)); | |||
| GELOGI("Cpu kernel launch check optype task success."); | |||
| return SUCCESS; | |||
| @@ -126,14 +126,14 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ModelManager { | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief Get cur_dynamic_dims for all input. | |||
| /// @param [in] vector<vector<uint64_t>> &user_real_input_dims: dims info of all user_inputs. | |||
| /// @param [in] vector<vector<int64_t>> &user_real_input_dims: dims info of all user_inputs. | |||
| /// @param [in] vector<pair<string, vector<int64_t>>> &user_input_dims: key:name. value:dynamic dims from option. | |||
| /// @param [out] vector<uint64_t> &cur_dynamic_dims: real dims gather, where the index of -1. | |||
| /// @param [out] vector<int32_t> &cur_dynamic_dims: real dims gather, where the index of -1. | |||
| /// @return 0: SUCCESS / others: INTERNAL_ERROR | |||
| /// | |||
| Status GetCurDynamicDims(const vector<vector<int64_t>> &user_real_input_dims, | |||
| const vector<pair<string, vector<int64_t>>> &user_input_dims, | |||
| vector<int64_t> &cur_dynamic_dims); | |||
| vector<int32_t> &cur_dynamic_dims); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| @@ -239,24 +239,10 @@ class FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY ModelManager { | |||
| /// @param [out] aipp_info | |||
| /// @return execute result | |||
| /// | |||
| ge::Status GetAIPPInfo(const uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info); | |||
| ge::Status GetAippInfo(const uint32_t model_id, uint32_t index, AippConfigInfo &aipp_info); | |||
| ge::Status GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index); | |||
| /// | |||
| /// @ingroup domi_ome | |||
| /// @brief set model input and output size zero copy | |||
| /// @param [in] model_id model id | |||
| /// @param [out] input_shape input tensor | |||
| /// @param [out] output_shape output tensor | |||
| /// @return SUCCESS success | |||
| /// @return PARAM_INVALID parameter invalid | |||
| /// | |||
| ge::Status GetInputOutputDescInfoForZeroCopy(const uint32_t model_id, std::vector<InputOutputDescInfo> &input_desc, | |||
| std::vector<InputOutputDescInfo> &output_desc, | |||
| std::vector<uint32_t> &inputFormats, | |||
| std::vector<uint32_t> &outputFormats); | |||
| ge::Status GetCurShape(const uint32_t model_id, std::vector<int64_t> &batch_info, int32_t &dynamic_type); | |||
| ge::Status GetModelAttr(uint32_t model_id, std::vector<string> &dynamic_output_shape_info); | |||
| @@ -145,7 +145,9 @@ Status HcclTaskInfo::SetFollowStream(const ge::ConstOpDescPtr &op_desc, DavinciM | |||
| } else { | |||
| GELOGI("need to reuse follow stream and create new follow stream."); | |||
| size_t created_stream_num = follow_stream_usage.size(); | |||
| hccl_stream_list_ = follow_stream_usage; | |||
| for (const auto &stream : follow_stream_usage) { | |||
| hccl_stream_list_.emplace_back(stream); | |||
| } | |||
| ret = CreateStream(hccl_stream_num - created_stream_num, davinci_model, main_stream_id); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(RT_FAILED, "Create hccl stream failed."); | |||
| @@ -101,6 +101,7 @@ | |||
| #include "graph/common/local_context.h" | |||
| #include "graph/common/omg_util.h" | |||
| #include "common/formats/utils/formats_trans_utils.h" | |||
| #include "register/custom_pass_helper.h" | |||
| namespace { | |||
| const char *const kSummary = "Summary"; | |||
| @@ -686,7 +687,7 @@ Status GraphManager::PreRunOptimizeOriginalGraph(const GraphNodePtr &graph_node, | |||
| CompilerStages &stages = GetCompilerStages(graph_node->GetGraphId()); | |||
| GM_RUN_AND_DUMP_PERF("OptimizeGraphPrepare", stages.optimizer.OptimizeOriginalGraphForQuantize, compute_graph); | |||
| GM_RUN_AND_DUMP_PERF("HandleSummaryOp", stages.optimizer.HandleSummaryOp, compute_graph); | |||
| GM_RUN_AND_DUMP_PERF("Prepare", stages.preparer.PrepareDynShape, graph_node->GetGraph(), inputs, compute_graph, | |||
| GM_RUN_AND_DUMP_PERF("Prepare", stages.preparer.PrepareDynShape, graph_node, inputs, compute_graph, | |||
| session_id); | |||
| GM_RUN_AND_DUMP_PERF("OptimizeOriginalGraph", stages.optimizer.OptimizeOriginalGraph, compute_graph); | |||
| @@ -731,6 +732,9 @@ Status GraphManager::PreRunAfterOptimizeSubGraph(const GraphNodePtr &graph_node, | |||
| GeRootModelPtr &ge_root_model, uint64_t session_id) { | |||
| GE_CHECK_NOTNULL(graph_node); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| CompilerStages &stages = GetCompilerStages(graph_node->GetGraphId()); | |||
| GM_RUN_AND_DUMP_PERF("OptimizeWholeGraph", stages.optimizer.OptimizeWholeGraph, compute_graph); | |||
| GM_RUN_AND_DUMP_PERF("Optimize2", OptimizeStage2, compute_graph); | |||
| GM_RUN_AND_DUMP_PERF("OptimizeGraphBeforeBuildForRts", | |||
| GetCompilerStages(graph_node->GetGraphId()).optimizer.OptimizeGraphBeforeBuildForRts, | |||
| @@ -765,10 +769,24 @@ Status GraphManager::SetRtContext(rtContext_t rt_context, rtCtxMode_t mode, uint | |||
| return SUCCESS; | |||
| } | |||
| Status GraphManager::RunCustomPass(const GraphNodePtr &graph_node) { | |||
| ConstGraphPtr const_graph = graph_node->GetGraph(); | |||
| auto comp_graph = GraphUtils::GetComputeGraph(*const_graph); | |||
| GE_DUMP(comp_graph, "RunCustomPassBegin"); | |||
| GE_TIMESTAMP_START(RunCustomPass); | |||
| GraphPtr graph = std::const_pointer_cast<Graph>(const_graph); | |||
| GE_CHK_STATUS_RET(CustomPassHelper::Instance().Run(graph), "Graph[%s] run custom pass fail.", | |||
| comp_graph->GetName().c_str()); | |||
| GE_TIMESTAMP_END(RunCustomPass, "GraphBuilder::RunCustomPass"); | |||
| return SUCCESS; | |||
| } | |||
| Status GraphManager::PreRun(const GraphNodePtr &graph_node, const std::vector<GeTensor> &inputs, | |||
| GeRootModelPtr &ge_root_model, uint64_t session_id) { | |||
| GE_CHECK_NOTNULL(graph_node); | |||
| GE_CHECK_NOTNULL(graph_node->GetGraph()); | |||
| GE_CHK_STATUS_RET_NOLOG(RunCustomPass(graph_node)); | |||
| auto compute_graph = GraphUtils::GetComputeGraph(*graph_node->GetGraph()); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| compute_graph->SetSessionID(session_id); | |||
| @@ -1172,7 +1190,7 @@ Status GraphManager::BuildGraphForUnregisteredOp(const GraphId &graph_id, const | |||
| auto compute_graph = GraphUtils::GetComputeGraph(*graph_node->GetGraph()); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| GM_RUN_AND_DUMP_PERF("Prepare", GetCompilerStages(graph_id).preparer.PrepareDynShape, graph_node->GetGraph(), inputs, | |||
| GM_RUN_AND_DUMP_PERF("Prepare", GetCompilerStages(graph_id).preparer.PrepareDynShape, graph_node, inputs, | |||
| compute_graph, session_id); | |||
| for (auto &node : compute_graph->GetAllNodes()) { | |||
| @@ -2762,8 +2780,10 @@ Status GraphManager::ParseInputsDims(const std::vector<InputTensorInfo> &input_t | |||
| if (!GetLocalOmgContext().dynamic_node_type.empty()) { | |||
| vector<NodePtr> data_nodes; | |||
| vector<NodePtr> getnext_nosink_nodes; | |||
| data_nodes = compute_graph_->TryGetExtAttr(kExtAttrDataNodes, data_nodes); | |||
| getnext_nosink_nodes = compute_graph_->TryGetExtAttr(kExtAttrGetNextNoSink, getnext_nosink_nodes); | |||
| data_nodes = GetLocalOmgContext().data_nodes; | |||
| getnext_nosink_nodes = GetLocalOmgContext().getnext_nosink_nodes; | |||
| GELOGD("Data nodes count is %zu, getnext nosink nodes count is %zu.", data_nodes.size(), | |||
| getnext_nosink_nodes.size()); | |||
| if (GetLocalOmgContext().dynamic_node_type == DATA) { | |||
| if (getnext_nosink_nodes.empty()) { | |||
| // just data or data+getnext_sink | |||
| @@ -226,6 +226,7 @@ class GraphManager { | |||
| void ParseInputsDimsForData(const std::vector<InputTensorInfo> &input_tensor); | |||
| Status ParseInputsDimsForGetNexNosinkAndData(const vector<NodePtr> &dynamic_nodes, | |||
| const std::vector<InputTensorInfo> &input_tensor); | |||
| Status RunCustomPass(const GraphNodePtr &graph_node); | |||
| Status PreRun(const GraphNodePtr &graph_node, const std::vector<GeTensor> &inputs, GeRootModelPtr &ge_root_model, | |||
| uint64_t session_id = INVALID_SESSION_ID); | |||
| @@ -336,4 +336,37 @@ Status GraphOptimize::IdentifyReference(ComputeGraphPtr &compute_graph) { | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GraphOptimize::OptimizeWholeGraph(ComputeGraphPtr &compute_graph) { | |||
| if (compute_graph == nullptr) { | |||
| GELOGE(GE_GRAPH_OPTIMIZE_COMPUTE_GRAPH_NULL, "[OptimizeWholeGraph]: compute_graph is nullptr."); | |||
| return GE_GRAPH_OPTIMIZE_COMPUTE_GRAPH_NULL; | |||
| } | |||
| std::shared_ptr<GELib> instance_ptr = ge::GELib::GetInstance(); | |||
| if (instance_ptr == nullptr || !instance_ptr->InitFlag()) { | |||
| GELOGE(GE_CLI_GE_NOT_INITIALIZED, "OptimizeWholeGraph failed."); | |||
| return GE_CLI_GE_NOT_INITIALIZED; | |||
| } | |||
| auto graph_optimizer = instance_ptr->OpsKernelManagerObj().GetAllGraphOptimizerObjsByPriority(); | |||
| GELOGI("optimize by opskernel in OptimizeWholeGraph. num of graph_optimizer is %zu.", graph_optimizer.size()); | |||
| Status ret = SUCCESS; | |||
| string exclude_core_type = (core_type_ == kVectorCore) ? kAicoreEngine : kVectorEngine; | |||
| GELOGD("[OptimizeWholeGraph]: engine type will exclude: %s", exclude_core_type.c_str()); | |||
| if (!graph_optimizer.empty()) { | |||
| for (auto &iter : graph_optimizer) { | |||
| if (iter.first == exclude_core_type || iter.second == nullptr) { | |||
| continue; | |||
| } | |||
| GELOGI("Begin to optimize whole graph by engine %s", iter.first.c_str()); | |||
| ret = iter.second->OptimizeWholeGraph(*compute_graph); | |||
| GE_DUMP(compute_graph, "OptimizeWholeGraph" + iter.first); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(ret, "[OptimizeWholeGraph]: graph optimize failed, ret:%u", ret); | |||
| return ret; | |||
| } | |||
| } | |||
| } | |||
| return ret; | |||
| } | |||
| } // namespace ge | |||
| @@ -52,6 +52,9 @@ class GraphOptimize { | |||
| // for fe prepare optimize in quantize scene | |||
| Status OptimizeOriginalGraphForQuantize(ComputeGraphPtr &compute_graph); | |||
| // for engine to optimize merged whole graph before ge Optimize2 | |||
| Status OptimizeWholeGraph(ComputeGraphPtr &compute_graph); | |||
| // for rts optimize before build to add attr and insert memcpy op | |||
| Status OptimizeGraphBeforeBuildForRts(ComputeGraphPtr &compute_graph); | |||
| @@ -26,6 +26,10 @@ | |||
| namespace ge { | |||
| namespace { | |||
| std::set<std::string> un_compute_attrs = { | |||
| {ATTR_NAME_DATA_DUMP_ORIGIN_OP_NAMES}, | |||
| }; | |||
| std::string GetCseKey(const NodePtr &node) { | |||
| std::stringstream ss; | |||
| ss << node->GetType() << "-data-inputs-"; | |||
| @@ -49,7 +53,7 @@ std::string GetCseKey(const NodePtr &node) { | |||
| ss << name << "-"; | |||
| } | |||
| ss << "attrs-" << AttrUtils::GetAllAttrsStr(node->GetOpDesc()); | |||
| ss << "attrs-" << AttrUtils::GetAttrsStrAfterRid(node->GetOpDesc(), un_compute_attrs); | |||
| return ss.str(); | |||
| } | |||
| @@ -25,31 +25,65 @@ | |||
| #include "graph/utils/tensor_utils.h" | |||
| #include "graph/utils/type_utils.h" | |||
| #include "register/op_registry.h" | |||
| #include "graph/common/omg_util.h" | |||
| namespace ge { | |||
| namespace { | |||
| constexpr uint8_t kDataInIndex = 0; | |||
| constexpr uint8_t kDataOutIndex = 0; | |||
| constexpr uint8_t kCaseArgIndex = 1; | |||
| const int kDivisionConst = 2; | |||
| const size_t kNumOfGetnextNode = 1; | |||
| const std::string kMultiBatchCaseNode = "ascend_mbatch_shape_case"; | |||
| const std::string kMultiBatchDataNode = "ascend_mbatch_shape_data"; | |||
| const std::string kMultiBatchGetDynamicDimsNode = "ascend_mbatch_get_dynamic_dims_node"; | |||
| const std::string kMultiBatchConstNode = "ascend_mbatch_shape_const"; | |||
| const std::string kMultiBatchMapIndexNode = "ascend_mbatch_shape_mapindex"; | |||
| const std::string kMultiBatchNodePostfix = "_ascend_mbatch_batch_"; | |||
| const char *const kGetNextName = "IteratorV2"; | |||
| } // namespace | |||
| inline bool IsGetNextType(const NodePtr &node) { | |||
| std::string original_type; | |||
| GE_IF_BOOL_EXEC(GetOriginalType(node, original_type) != SUCCESS, | |||
| GELOGW("Get original type failed."); return false); | |||
| return (original_type == kGetNextName); | |||
| } | |||
| Status MultiBatchClonePass::Run(ComputeGraphPtr graph) { | |||
| GE_IF_BOOL_EXEC(graph == nullptr, GELOGE(FAILED, "Original graph is nullptr"); return FAILED); | |||
| if (graph->GetParentGraph() != nullptr) { | |||
| GELOGD("Subgraph %s skip the MultiBatchClonePass", graph->GetName().c_str()); | |||
| return SUCCESS; | |||
| } | |||
| if (!GetLocalOmgContext().need_multi_batch) { | |||
| GELOGI("No need to process_multi for no_train graph."); | |||
| return SUCCESS; | |||
| } | |||
| std::vector<NodePtr> data_nodes; | |||
| std::vector<NodePtr> getnext_nosink_nodes; | |||
| std::vector<NodePtr> getnext_sink_nodes; | |||
| if (multibatch::CheckSequenceOfOptions(graph, data_nodes, getnext_nosink_nodes, getnext_sink_nodes) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "[Train_Dynamic] CheckSequenceOfOptions failed."); | |||
| return PARAM_INVALID; | |||
| } | |||
| if (multibatch::UpdateNameOfInputShape(graph, data_nodes, getnext_nosink_nodes, getnext_sink_nodes) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "[Train_Dynamic] UpdateNameForInputShapeOfOption failed."); | |||
| return PARAM_INVALID; | |||
| } | |||
| if (multibatch::DeleteIdentityInsertByAdapter(graph) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "[Train_Dynamic] DeleteIdentityInsertByAdapter failed."); | |||
| return PARAM_INVALID; | |||
| } | |||
| if (!multibatch::InitDynamicParams(batch_shapes_)) { | |||
| GELOGD("There is no multi-batch options, no need clone multi-batch graph"); | |||
| return SUCCESS; | |||
| } | |||
| if (multibatch::CheckNegativeCountOfOptions(batch_shapes_) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "[Train_Dynamic] Input_shape and dynamic_dims should set correct params."); | |||
| return PARAM_INVALID; | |||
| } | |||
| GELOGD("Begin to run Multi-batch clone on graph: %s", graph->GetName().c_str()); | |||
| GE_CHK_STATUS_RET(multibatch::CheckDynamicParams(batch_shapes_), "Invalid multi-batch param"); | |||
| if (CollectIoNodes(graph) != SUCCESS) { | |||
| @@ -66,21 +100,14 @@ Status MultiBatchClonePass::Run(ComputeGraphPtr graph) { | |||
| (void)AttrUtils::GetStr(graph, ATTR_NAME_SESSION_GRAPH_ID, session_graph_id_); | |||
| ComputeGraphPtr branch = MakeShared<ComputeGraph>(graph->GetName()); | |||
| if (branch == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create multi-batch graph failed"); | |||
| return OUT_OF_MEMORY; | |||
| } | |||
| GE_IF_BOOL_EXEC(branch == nullptr, GELOGE(OUT_OF_MEMORY, "Create multi batch graph failed"); return OUT_OF_MEMORY); | |||
| (void)AttrUtils::SetStr(branch, ATTR_NAME_SESSION_GRAPH_ID, session_graph_id_); | |||
| graph->InValid(); // Will modify, need topological again. | |||
| graph->Swap(*branch); | |||
| if (CreateRootGraph(graph) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| if (CreateSubgraphs(graph, branch) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| GE_CHK_STATUS_RET(CreateRootGraph(graph), "Construct root graph failed."); | |||
| GE_CHK_STATUS_RET(CreateOriGraph(branch), "Construct original graph failed.") | |||
| GE_CHK_STATUS_RET(CreateSubgraphs(graph, branch), "Construct subgraph failed."); | |||
| GE_CHK_STATUS_RET(PruneDirectOutput(graph), "Prune direct output failed"); | |||
| GELOGD("MultiBatchClonePass Leave"); | |||
| @@ -95,9 +122,13 @@ Status MultiBatchClonePass::Run(ComputeGraphPtr graph) { | |||
| /// | |||
| Status MultiBatchClonePass::CollectIoNodes(const ComputeGraphPtr &graph) { | |||
| for (const auto &node : graph->GetDirectNode()) { | |||
| if (!GetLocalOmgContext().dynamic_node_type.empty() && IsGetNextType(node)) { | |||
| all_data_nodes_.emplace_back(node); | |||
| GE_CHK_STATUS_RET(InitParamsOfGetNext(node), "Init params of %s failed.", node->GetName().c_str()); | |||
| } | |||
| if (node->GetType() == DATA) { | |||
| all_data_nodes_.emplace_back(node); | |||
| } else if (node->GetType() == CONSTANT) { | |||
| } else if (node->GetType() == CONSTANT || node->GetType() == CONSTANTOP) { | |||
| all_const_nodes_.emplace_back(node); | |||
| } else if (node->GetType() == NETOUTPUT) { | |||
| all_output_nodes_.emplace_back(node); | |||
| @@ -114,10 +145,16 @@ Status MultiBatchClonePass::CollectIoNodes(const ComputeGraphPtr &graph) { | |||
| } | |||
| int64_t data_index = 0; | |||
| size_t getnext_node_count = 0; | |||
| for (size_t i = 0; i < all_data_nodes_.size(); ++i) { | |||
| if (IsGetNextType(all_data_nodes_[i])) { | |||
| // just one getnext node in graph | |||
| getnext_node_count++; | |||
| continue; | |||
| } | |||
| const auto &op_desc = all_data_nodes_[i]->GetOpDesc(); | |||
| if (!AttrUtils::GetInt(op_desc, ATTR_NAME_INDEX, data_index)) { | |||
| (void)AttrUtils::SetInt(op_desc, ATTR_NAME_INDEX, i); | |||
| (void)AttrUtils::SetInt(op_desc, ATTR_NAME_INDEX, i - getnext_node_count); | |||
| } | |||
| } | |||
| @@ -133,7 +170,43 @@ Status MultiBatchClonePass::CollectIoNodes(const ComputeGraphPtr &graph) { | |||
| "Remove edge failed"); | |||
| } | |||
| } | |||
| GELOGD("Data count is %zu, const count is %zu, getnext count is %zu, output count is %zu, direct out count is %zu.", | |||
| all_data_nodes_.size(), all_const_nodes_.size(), getnext_node_count, all_output_nodes_.size(), | |||
| direct_output_.size()); | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::InitParamsOfGetNext(const NodePtr &node) { | |||
| data_count_from_getnext_ = 0; | |||
| getnext_sink_dynamic_dims_ = false; | |||
| GE_CHECK_NOTNULL(node->GetOpDesc()); | |||
| data_count_from_getnext_ = node->GetOpDesc()->GetOutputsSize(); | |||
| if (GetLocalOmgContext().dynamic_node_type == GETNEXT) { | |||
| data_count_from_getnext_ = data_count_from_getnext_ / kDivisionConst; | |||
| for (size_t i = 0; i < data_count_from_getnext_; ++i) { | |||
| GeTensorDesc output_desc = node->GetOpDesc()->GetOutputDesc(i); | |||
| GELOGD("The %zu data shape from getnext sink is %s.", i, | |||
| formats::JoinToString(output_desc.GetShape().GetDims()).c_str()); | |||
| const auto &dims = output_desc.GetShape().GetDims(); | |||
| if (std::all_of(dims.begin(), dims.end(), [](int64_t val) {return val >= 0; })) { | |||
| GELOGD("The %zu data from %s is static.", i, node->GetName().c_str()); | |||
| } else { | |||
| getnext_sink_dynamic_dims_ = true; | |||
| GELOGD("Dynamic dims in the pattern of getnext sink."); | |||
| } | |||
| } | |||
| } | |||
| if (node->GetOutControlAnchor() != nullptr) { | |||
| for (const auto &peer_in_control_anchor : node->GetOutControlAnchor()->GetPeerInControlAnchors()) { | |||
| NodePtr next_node = peer_in_control_anchor->GetOwnerNode(); | |||
| GE_CHECK_NOTNULL(next_node); | |||
| if (next_node->GetType() == CONSTANTOP) { | |||
| out_control_nodes_.insert(next_node); | |||
| GELOGD("Control edge: %s connect with %s.", node->GetName().c_str(), next_node->GetName().c_str()); | |||
| } | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| @@ -144,7 +217,11 @@ Status MultiBatchClonePass::CollectIoNodes(const ComputeGraphPtr &graph) { | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::CreateRootGraph(const ComputeGraphPtr &graph) { | |||
| GELOGD("Start create root graph of %s.", graph->GetName().c_str()); | |||
| uint32_t input_num = all_data_nodes_.size() + all_const_nodes_.size(); | |||
| if (data_count_from_getnext_ != 0) { | |||
| input_num = input_num + data_count_from_getnext_ - kNumOfGetnextNode; | |||
| } | |||
| uint32_t output_num = all_output_nodes_[0]->GetAllInDataAnchorsSize(); | |||
| OpDescBuilder op_builder(kMultiBatchCaseNode, CASE); | |||
| @@ -185,6 +262,10 @@ Status MultiBatchClonePass::CreateRootGraph(const ComputeGraphPtr &graph) { | |||
| op_desc->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| if (!AttrUtils::SetBool(op_desc, ATTR_INSERT_BY_MBATCH, true)) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to add insert attr on case node %s", op_desc->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| GE_CHK_STATUS_RET(multibatch::StampDynamicType(op_desc), "Set dynamic type failed"); | |||
| GE_CHK_STATUS_RET(CreateIndexNode(graph), "Create index node failed"); | |||
| @@ -202,7 +283,7 @@ Status MultiBatchClonePass::CreateRootGraph(const ComputeGraphPtr &graph) { | |||
| /// @param [in] NodePtr node: index data node. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::CreateIndexDataNode(const ComputeGraphPtr &graph, NodePtr &node) { | |||
| Status MultiBatchClonePass::CreateIndexDataNode(const ComputeGraphPtr &graph, NodePtr &shape_node) { | |||
| const OpDescPtr data_desc = MakeShared<OpDesc>(kMultiBatchDataNode, DATA); | |||
| if (data_desc == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create multi-batch data node failed"); | |||
| @@ -220,11 +301,12 @@ Status MultiBatchClonePass::CreateIndexDataNode(const ComputeGraphPtr &graph, No | |||
| } | |||
| size_t data_index = all_data_nodes_.size(); | |||
| data_index = data_count_from_getnext_ != 0 ? data_index - kNumOfGetnextNode : data_index; | |||
| (void)AttrUtils::SetInt(data_desc, ATTR_NAME_INDEX, data_index); | |||
| (void)AttrUtils::SetBool(data_desc, ATTR_INSERT_BY_MBATCH, true); | |||
| node = graph->AddNode(data_desc); | |||
| if (node == nullptr) { | |||
| shape_node = graph->AddNode(data_desc); | |||
| if (shape_node == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create multi-batch data node failed"); | |||
| return OUT_OF_MEMORY; | |||
| } | |||
| @@ -286,15 +368,19 @@ Status MultiBatchClonePass::CreateIndexConstNode(const ComputeGraphPtr &graph, N | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::CreateIndexNode(const ComputeGraphPtr &graph) { | |||
| // Data --> MapIndex --> Case | |||
| NodePtr data_node; | |||
| GE_CHK_STATUS_RET(CreateIndexDataNode(graph, data_node), "Create data node failed"); | |||
| // Data/GetDynamicDims --> MapIndex --> Case | |||
| if (!getnext_sink_dynamic_dims_) { | |||
| GE_CHK_STATUS_RET(CreateIndexDataNode(graph, shape_node_), "Create data node failed"); | |||
| } else { | |||
| GE_CHK_STATUS_RET(CreateGetDynamicDimsNode(graph, shape_node_), "Create get dynamic dims node failed"); | |||
| } | |||
| NodePtr const_node; | |||
| GE_CHK_STATUS_RET(CreateIndexConstNode(graph, const_node), "Create const node failed"); | |||
| GELOGD("Shape node name is %s, type is %s, const node name is %s.", shape_node_->GetName().c_str(), | |||
| shape_node_->GetType().c_str(), const_node->GetName().c_str()); | |||
| OpDescBuilder op_builder(kMultiBatchMapIndexNode, "MapIndex"); | |||
| op_builder.AddInput("x", data_node->GetOpDesc()->GetOutputDesc(0)) | |||
| op_builder.AddInput("x", shape_node_->GetOpDesc()->GetOutputDesc(0)) | |||
| .AddInput("data_seq", const_node->GetOpDesc()->GetOutputDesc(0)) | |||
| .AddOutput("y", GeTensorDesc(GeShape(), FORMAT_ND, DT_INT32)); | |||
| @@ -309,8 +395,10 @@ Status MultiBatchClonePass::CreateIndexNode(const ComputeGraphPtr &graph) { | |||
| return OUT_OF_MEMORY; | |||
| } | |||
| if (GraphUtils::AddEdge(data_node->GetOutDataAnchor(0), index_node->GetInDataAnchor(0)) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add edge between node:%s to MapIndex:%s", data_node->GetName().c_str(), | |||
| GE_CHK_STATUS_RET(AddAttrForGetDynamicDims(shape_node_), "Failed to add attr for %s.", | |||
| shape_node_->GetName().c_str()); | |||
| if (GraphUtils::AddEdge(shape_node_->GetOutDataAnchor(0), index_node->GetInDataAnchor(0)) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add edge between node:%s to MapIndex:%s", shape_node_->GetName().c_str(), | |||
| index_node->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| @@ -328,6 +416,120 @@ Status MultiBatchClonePass::CreateIndexNode(const ComputeGraphPtr &graph) { | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::CreateGetDynamicDimsNode(const ComputeGraphPtr &graph, NodePtr &shape_node) { | |||
| const OpDescPtr data_desc = MakeShared<OpDesc>(kMultiBatchGetDynamicDimsNode, GETDYNAMICDIMS); | |||
| if (data_desc == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create multi-batch get dynamic dims node failed"); | |||
| return OUT_OF_MEMORY; | |||
| } | |||
| // input of GetDynamicDims is shape_of_each_data, output is gear_info | |||
| for (size_t i = 0; i < GetLocalOmgContext().user_input_dims.size(); ++i) { | |||
| size_t input_shape_dims = GetLocalOmgContext().user_input_dims.at(i).second.size(); | |||
| // add input desc without GeShape for const input, value of input_shape is 1 transferred by adapter | |||
| if (input_shape_dims == 1 && GetLocalOmgContext().user_input_dims.at(i).second.at(0) == 0) { | |||
| GeTensorDesc tensor_desc; | |||
| tensor_desc.SetFormat(FORMAT_ND); | |||
| tensor_desc.SetDataType(DT_INT32); | |||
| auto ret = data_desc->AddInputDesc(tensor_desc); | |||
| GE_IF_BOOL_EXEC(ret != GRAPH_SUCCESS, GELOGE(INTERNAL_ERROR, "Failed to add input desc for created data"); | |||
| return FAILED); | |||
| continue; | |||
| } | |||
| GeTensorDesc tensor_desc(GeShape({static_cast<int32_t>(input_shape_dims)}), FORMAT_ND, DT_INT32); | |||
| auto ret = data_desc->AddInputDesc(tensor_desc); | |||
| GE_IF_BOOL_EXEC(ret != GRAPH_SUCCESS, GELOGE(INTERNAL_ERROR, "Failed to add input desc for created data"); | |||
| return FAILED); | |||
| } | |||
| GeTensorDesc tensor_desc(GeShape({static_cast<int32_t>(batch_shapes_.at(0).size())}), FORMAT_ND, DT_INT32); | |||
| auto ret = data_desc->AddOutputDesc(tensor_desc); | |||
| GE_IF_BOOL_EXEC(ret != GRAPH_SUCCESS, GELOGE(INTERNAL_ERROR, "Failed to add output desc for created data"); | |||
| return FAILED); | |||
| (void)AttrUtils::SetBool(data_desc, ATTR_INSERT_BY_MBATCH, true); | |||
| shape_node = graph->AddNode(data_desc); | |||
| if (shape_node == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create multi-batch dynamic dims node failed"); | |||
| return OUT_OF_MEMORY; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::AddAttrForGetDynamicDims(const NodePtr &shape_node) { | |||
| if (!getnext_sink_dynamic_dims_) { | |||
| GELOGD("No need to add attr when not insert get dynamic dims node."); | |||
| return SUCCESS; | |||
| } | |||
| GELOGD("Add attr for :%s, type is %s:", shape_node->GetName().c_str(), shape_node->GetType().c_str()); | |||
| if (!AttrUtils::SetInt(shape_node->GetOpDesc(), ATTR_GETNEXT_SINK_DATA_COUNT, data_count_from_getnext_)) { | |||
| GELOGE(INTERNAL_ERROR, "set ATTR_GETNEXT_SINK_DATA_COUNT failed"); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| vector<int64_t> shape_info; | |||
| for (size_t i = 0; i < GetLocalOmgContext().user_input_dims.size(); ++i) { | |||
| if (GetLocalOmgContext().user_input_dims.at(i).second.size() == 1 && | |||
| GetLocalOmgContext().user_input_dims.at(i).second.at(0) == 0) { | |||
| shape_info.emplace_back(0); | |||
| continue; | |||
| } | |||
| shape_info.emplace_back(GetLocalOmgContext().user_input_dims.at(i).second.size()); | |||
| for (size_t j = 0; j < GetLocalOmgContext().user_input_dims.at(i).second.size(); ++j) { | |||
| shape_info.emplace_back(GetLocalOmgContext().user_input_dims.at(i).second.at(j)); | |||
| } | |||
| } | |||
| if (!AttrUtils::SetListInt(shape_node->GetOpDesc(), ATTR_GETNEXT_SINK_SHAPE_INFO, shape_info)) { | |||
| GELOGE(INTERNAL_ERROR, "set ATTR_GETNEXT_SINK_SHAPE_INFO failed"); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::LinkGetNextToGetDynamicDims(const NodePtr &getnext_node, const NodePtr &shape_node) { | |||
| GELOGD("Start relink shape anchor of %s to %s.", getnext_node->GetName().c_str(), shape_node->GetName().c_str()); | |||
| size_t input_index = 0; | |||
| size_t data_count = getnext_node->GetAllOutDataAnchors().size() / kDivisionConst; | |||
| for (size_t out_index = data_count; out_index < getnext_node->GetAllOutDataAnchors().size(); ++out_index, | |||
| ++input_index) { | |||
| GELOGD("Start add %s of %zu out_anchor to %s of %zu in_anchor.", getnext_node->GetName().c_str(), out_index, | |||
| shape_node->GetName().c_str(), input_index); | |||
| auto out_data_anchor = getnext_node->GetOutDataAnchor(out_index); | |||
| auto ret = GraphUtils::AddEdge(out_data_anchor, shape_node->GetInDataAnchor(input_index)); | |||
| GE_IF_BOOL_EXEC(ret != GRAPH_SUCCESS, GELOGE(INTERNAL_ERROR, "Failed to link getnext %s to getdynamicdims %s", | |||
| getnext_node->GetName().c_str(), shape_node->GetName().c_str()); | |||
| return INTERNAL_ERROR); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::LinkGetDynamicDimsToNetOutput(const NodePtr &output_node) { | |||
| if (!GetLocalOmgContext().dynamic_node_type.empty()) { | |||
| if (!AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, GetLocalOmgContext().dynamic_dims)) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to set all gears info attr on netoutput %s.", output_node->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| } | |||
| if (getnext_sink_dynamic_dims_) { | |||
| GELOGD("Start link %s to %s.", shape_node_->GetName().c_str(), output_node->GetName().c_str()); | |||
| size_t input_index = output_node->GetAllInDataAnchors().size(); | |||
| if (NodeUtils::AppendInputAnchor(output_node, input_index + 1) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Append input anchor of %s of %zu failed.", output_node->GetName().c_str(), input_index); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| auto ret = GraphUtils::AddEdge(shape_node_->GetOutDataAnchor(kDataOutIndex), | |||
| output_node->GetInDataAnchor(input_index)); | |||
| GE_IF_BOOL_EXEC(ret != GRAPH_SUCCESS, GELOGE(INTERNAL_ERROR, "Failed to link netoutput %s to getdynamicdims %s", | |||
| output_node->GetName().c_str(), shape_node_->GetName().c_str()); | |||
| return INTERNAL_ERROR); | |||
| if (!AttrUtils::SetBool(output_node->GetOpDesc(), ATTR_GETNEXT_SINK_DYNMAIC, true)) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to set getnext sink dynamic attr on netoutput %s.", | |||
| output_node->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Create input node for root graph. | |||
| @@ -337,8 +539,10 @@ Status MultiBatchClonePass::CreateIndexNode(const ComputeGraphPtr &graph) { | |||
| Status MultiBatchClonePass::CreateInputNode(const ComputeGraphPtr &graph) { | |||
| // Data --> Case | |||
| std::vector<NodePtr> all_data_nodes; | |||
| const size_t arg_index = kCaseArgIndex; | |||
| for (size_t i = 0; i < all_data_nodes_.size(); ++i) { | |||
| size_t case_input_index = kCaseArgIndex; | |||
| NodePtr getnext_node = nullptr; | |||
| size_t input_index_of_getnext = 0; | |||
| for (size_t i = 0; i < all_data_nodes_.size(); ++i, ++case_input_index) { | |||
| const auto &node = all_data_nodes_[i]; | |||
| const OpDescPtr op_desc = AttrUtils::CopyOpDesc(node->GetOpDesc()); | |||
| if (op_desc == nullptr) { | |||
| @@ -353,22 +557,60 @@ Status MultiBatchClonePass::CreateInputNode(const ComputeGraphPtr &graph) { | |||
| op_desc->SetName(node->GetName()); | |||
| const NodePtr &data = graph->AddNode(op_desc); | |||
| GE_CHK_BOOL_EXEC(data != nullptr, return FAILED, "Add node[%s] to graph failed", op_desc->GetName().c_str()); | |||
| if (GraphUtils::AddEdge(data->GetOutDataAnchor(0), case_node_->GetInDataAnchor(arg_index + i)) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add edge between Data:%s to Case:%s", | |||
| data->GetName().c_str(), case_node_->GetName().c_str()); | |||
| return FAILED; | |||
| if (IsGetNextType(node)) { | |||
| getnext_node = data; | |||
| input_index_of_getnext = case_input_index; | |||
| case_input_index = case_input_index + data_count_from_getnext_; | |||
| continue; | |||
| } else { | |||
| if (GraphUtils::AddEdge(data->GetOutDataAnchor(0), case_node_->GetInDataAnchor(case_input_index)) != | |||
| GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add edge between Data:%s to Case:%s", data->GetName().c_str(), | |||
| case_node_->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| } | |||
| if (SetMaxShapeToData(data) != SUCCESS) { | |||
| if (SetMaxShape(data) != SUCCESS) { | |||
| GELOGE(FAILED, "Set max shape of %s failed.", data->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| all_data_nodes.emplace_back(data); | |||
| } | |||
| if (getnext_node != nullptr) { | |||
| if (LinkEdgeForGetNext(getnext_node, input_index_of_getnext) != SUCCESS) { | |||
| GELOGE(FAILED, "Failed to link edge for %s.", getnext_node->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| if (SetMaxShape(getnext_node) != SUCCESS) { | |||
| GELOGE(FAILED, "Set max shape of %s failed.", getnext_node->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| all_data_nodes.emplace_back(getnext_node); | |||
| } | |||
| all_data_nodes_.swap(all_data_nodes); | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::LinkEdgeForGetNext(const NodePtr &getnext_node, size_t &case_input_index) { | |||
| GELOGD("Start link edge for %s, which is the %zu input of %s.", getnext_node->GetName().c_str(), | |||
| case_input_index, case_node_->GetName().c_str()); | |||
| for (size_t out_index = 0; out_index < data_count_from_getnext_; ++out_index, ++case_input_index) { | |||
| if (GraphUtils::AddEdge(getnext_node->GetOutDataAnchor(out_index), | |||
| case_node_->GetInDataAnchor(case_input_index)) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add data edge between %zu Data:%s to %zu Case:%s", out_index, | |||
| getnext_node->GetName().c_str(), case_input_index, case_node_->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| } | |||
| if (getnext_sink_dynamic_dims_) { | |||
| GE_CHK_STATUS_RET(LinkGetNextToGetDynamicDims(getnext_node, shape_node_), "Failed to add link for %s.", | |||
| shape_node_->GetName().c_str()); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Create Const node for root graph. | |||
| @@ -378,7 +620,11 @@ Status MultiBatchClonePass::CreateInputNode(const ComputeGraphPtr &graph) { | |||
| Status MultiBatchClonePass::CreateConstNode(const ComputeGraphPtr &graph) { | |||
| // Const --> Case | |||
| std::vector<NodePtr> all_const_nodes; | |||
| const size_t arg_index = kCaseArgIndex + all_data_nodes_.size(); | |||
| size_t arg_index = kCaseArgIndex + all_data_nodes_.size(); | |||
| if (data_count_from_getnext_ != 0) { | |||
| arg_index = arg_index + data_count_from_getnext_ - kNumOfGetnextNode; | |||
| } | |||
| for (size_t i = 0; i < all_const_nodes_.size(); ++i) { | |||
| const auto &node = all_const_nodes_[i]; | |||
| const OpDescPtr op_desc = AttrUtils::CopyOpDesc(node->GetOpDesc()); | |||
| @@ -395,15 +641,33 @@ Status MultiBatchClonePass::CreateConstNode(const ComputeGraphPtr &graph) { | |||
| const NodePtr &data = graph->AddNode(op_desc); | |||
| GE_CHK_BOOL_EXEC(data != nullptr, return FAILED, "Add node[%s] to graph failed", op_desc->GetName().c_str()); | |||
| if (GraphUtils::AddEdge(data->GetOutDataAnchor(0), case_node_->GetInDataAnchor(arg_index + i)) != GRAPH_SUCCESS) { | |||
| GELOGE(FAILED, "Failed to add edge between Const:%s to Case:%s", | |||
| data->GetName().c_str(), case_node_->GetName().c_str()); | |||
| GELOGE(FAILED, "Failed to add edge between Const:%s to Case:%s", data->GetName().c_str(), | |||
| case_node_->GetName().c_str()); | |||
| return FAILED; | |||
| } | |||
| all_const_nodes.emplace_back(data); | |||
| } | |||
| ChangeConstToData(); | |||
| all_const_nodes_.swap(all_const_nodes); | |||
| return SUCCESS; | |||
| } | |||
| void MultiBatchClonePass::ChangeConstToData() { | |||
| size_t data_index = all_data_nodes_.size(); | |||
| if (data_count_from_getnext_ != 0) { | |||
| data_index = data_index + data_count_from_getnext_ - kNumOfGetnextNode; | |||
| } | |||
| for (size_t i = 0; i < all_const_nodes_.size(); ++i, ++data_index) { // Trans subgraph Const to Data. | |||
| auto &const_node = all_const_nodes_[i]; | |||
| bool need_change_type = true; | |||
| if (out_control_nodes_.find(const_node) != out_control_nodes_.end()) { | |||
| GELOGD("No need to change %s to data type.", const_node->GetName().c_str()); | |||
| need_change_type = false; | |||
| break; | |||
| } | |||
| if (!need_change_type) { | |||
| continue; | |||
| } | |||
| const OpDescPtr &op_desc = all_const_nodes_[i]->GetOpDesc(); | |||
| op_desc->SetType(DATA); | |||
| (void)op_desc->DelAttr(ATTR_NAME_WEIGHTS); // Delete weight. | |||
| @@ -413,9 +677,6 @@ Status MultiBatchClonePass::CreateConstNode(const ComputeGraphPtr &graph) { | |||
| (void)AttrUtils::SetInt(op_desc, ATTR_NAME_INDEX, data_index); | |||
| (void)NodeUtils::AppendInputAnchor(all_const_nodes_[i], 1); | |||
| } | |||
| all_const_nodes_.swap(all_const_nodes); | |||
| return SUCCESS; | |||
| } | |||
| /// | |||
| @@ -461,7 +722,8 @@ Status MultiBatchClonePass::CreateOutputNode(const ComputeGraphPtr &graph) { | |||
| } | |||
| } | |||
| } | |||
| GE_CHK_STATUS_RET(LinkGetDynamicDimsToNetOutput(node), "Failed to add edge between %s to netoutput: %s.", | |||
| shape_node_->GetName().c_str(), output->GetName().c_str()); | |||
| all_output_nodes_.clear(); | |||
| all_output_nodes_.emplace_back(node); | |||
| return SUCCESS; | |||
| @@ -473,34 +735,69 @@ Status MultiBatchClonePass::CreateOutputNode(const ComputeGraphPtr &graph) { | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::SetMaxShapeToData(const NodePtr &data) { | |||
| auto data_shape = NodeUtils::GetOutputDesc(*data, kDataOutIndex).GetShape(); | |||
| auto data_name = data->GetName(); | |||
| Status MultiBatchClonePass::SetMaxShape(const NodePtr &data) { | |||
| GELOGD("Start set max shape for %s.", data->GetName().c_str()); | |||
| if (!IsGetNextType(data)) { | |||
| if (SetMaxShapeToData(data, kDataOutIndex) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "Failed to update max shape of %s.", data->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| } else { | |||
| for (size_t out_anchor_index = 0; out_anchor_index < data_count_from_getnext_; ++out_anchor_index) { | |||
| if (SetMaxShapeToData(data, out_anchor_index) != SUCCESS) { | |||
| GELOGE(PARAM_INVALID, "Failed to update max shape of %s.", data->GetName().c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::SetMaxShapeToData(const NodePtr &node, size_t out_anchor_index) { | |||
| GELOGD("Start update max shape of %s, %zu output.", node->GetName().c_str(), out_anchor_index); | |||
| auto data_shape = NodeUtils::GetOutputDesc(*node, out_anchor_index).GetShape(); | |||
| string data_name = node->GetName(); | |||
| if (IsGetNextType(node)) { | |||
| data_name.append("_").append(std::to_string(out_anchor_index)); | |||
| } | |||
| GELOGD("Update max shape of %s, shape dims is %s.", data_name.c_str(), | |||
| formats::JoinToString(data_shape.GetDims()).c_str()); | |||
| const auto &dims = data_shape.GetDims(); | |||
| if (std::all_of(dims.begin(), dims.end(), [](int64_t val) { return val >= 0; })) { | |||
| return SUCCESS; | |||
| if (!IsGetNextType(node)) { | |||
| if (std::all_of(dims.begin(), dims.end(), [](int64_t val) { return val >= 0; })) { | |||
| GELOGD("No need to do anything for static data."); | |||
| return SUCCESS; | |||
| } | |||
| } else { | |||
| if (std::all_of(dims.begin(), dims.end(), [](int64_t val) { return val >= 0; })) { | |||
| if (getnext_sink_dynamic_dims_) { | |||
| // need to update shape of Shape_node when getnext node has dynamic data | |||
| GE_CHK_STATUS_RET(UpdateShapeOfShapeNode(node, out_anchor_index), "Failed to update shape of shape node"); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| } | |||
| (void)AttrUtils::SetListInt(data->GetOpDesc(), ATTR_MBATCH_ORIGIN_INPUT_DIMS, data_shape.GetDims()); | |||
| (void)AttrUtils::SetListInt(node->GetOpDesc(), ATTR_MBATCH_ORIGIN_INPUT_DIMS, data_shape.GetDims()); | |||
| GeTensorDesc tensor(NodeUtils::GetOutputDesc(*data, kDataOutIndex)); | |||
| GeTensorDesc tensor(NodeUtils::GetOutputDesc(*node, kDataOutIndex)); | |||
| std::vector<std::string> input_dims_str; | |||
| for (size_t i = 0; i < batch_shapes_.size(); ++i) { | |||
| auto shape = data_shape; | |||
| auto ret = multibatch::CalcShape(data_to_dynamic_info_.at(data_name).at(i), shape); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(ret, "Failed to calculate the shape for data node %s, the shape may not match", data->GetName().c_str()); | |||
| GELOGE(ret, "Failed to calculate the shape for data node %s, the shape may not match", node->GetName().c_str()); | |||
| return ret; | |||
| } | |||
| tensor.SetShape(shape); | |||
| int64_t tensor_size = 0; | |||
| (void)TensorUtils::GetTensorSizeInBytes(tensor, tensor_size); | |||
| string input_str = TypeUtils::FormatToSerialString(tensor.GetFormat()) + ":" + | |||
| TypeUtils::DataTypeToSerialString(tensor.GetDataType()) + ":" + data->GetName() + ":" + | |||
| TypeUtils::DataTypeToSerialString(tensor.GetDataType()) + ":" + node->GetName() + ":" + | |||
| std::to_string(tensor_size) + ":" + std::to_string(tensor.GetShape().GetDimNum()) + ":" + | |||
| formats::JoinToString(tensor.GetShape().GetDims()); | |||
| input_dims_str.emplace_back(input_str); | |||
| } | |||
| (void)AttrUtils::SetListStr(data->GetOpDesc(), "_all_origin_gears_inputs", input_dims_str); | |||
| (void)AttrUtils::SetListStr(node->GetOpDesc(), "_all_origin_gears_inputs", input_dims_str); | |||
| size_t max_shape_index = 0; | |||
| int64_t max_size = 0; | |||
| @@ -519,18 +816,72 @@ Status MultiBatchClonePass::SetMaxShapeToData(const NodePtr &data) { | |||
| max_shape_index = i; | |||
| } | |||
| } | |||
| return SetShapeToData(data_to_dynamic_info_.at(data_name).at(max_shape_index), node, data_shape, out_anchor_index); | |||
| } | |||
| return SetShapeToData(data_to_dynamic_info_.at(data_name).at(max_shape_index), data, data_shape); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Set max shape to Data/GetNext node in root graph. | |||
| /// @param [in] const std::vector<int64_t> &shapes: dims of shape. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @param [in] GeShape &data_shape: dims of data node. | |||
| /// @param [in] size_t out_anchor_index: out anchor index of data node. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::SetShapeToData(const std::vector<int64_t> &shapes, const NodePtr &data, GeShape &data_shape, | |||
| size_t out_anchor_index) { | |||
| GELOGD("Start set shape to %zu out of %s.", out_anchor_index, data->GetName().c_str()); | |||
| if (multibatch::CalcShape(shapes, data_shape) != SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to calculate the batched shape for data node %s, the shapes may not match", | |||
| data->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| if (NodeUtils::UpdateOutputShape(*data, out_anchor_index, data_shape) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to update output shape for data %s", data->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| if (!IsGetNextType(data)) { | |||
| if (NodeUtils::UpdateInputShape(*data, kDataInIndex, data_shape) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to update input shape for data %s", data->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| } else { | |||
| if (getnext_sink_dynamic_dims_) { | |||
| // need to update shape of Shape_node when getnext_sink_dynamic | |||
| GE_CHK_STATUS_RET(UpdateShapeOfShapeNode(data, out_anchor_index), "Failed to update shape of shape node"); | |||
| } | |||
| } | |||
| GELOGI("Update the data %s input/output shape to the max %s", data->GetName().c_str(), | |||
| formats::ShapeToString(data_shape).c_str()); | |||
| return SUCCESS; | |||
| } | |||
| Status MultiBatchClonePass::UpdateShapeOfShapeNode(const NodePtr &node, size_t out_anchor_index) { | |||
| GELOGD("Start update output shape of shape node insert by adapter, which is the %zu out of %s.", out_anchor_index, | |||
| node->GetName().c_str()); | |||
| auto data_shape = NodeUtils::GetOutputDesc(*node, out_anchor_index).GetShape(); | |||
| size_t shape_index = out_anchor_index + (node->GetAllOutDataAnchors().size() / kDivisionConst); | |||
| GeTensorDesc output_desc = node->GetOpDesc()->GetOutputDesc(shape_index); | |||
| std::vector<int64_t> output_dims = {static_cast<int64_t>(data_shape.GetDims().size())}; | |||
| GeShape output_shape(output_dims); | |||
| output_desc.SetShape(output_shape); | |||
| if (node->GetOpDesc()->UpdateOutputDesc(shape_index, output_desc) != SUCCESS) { | |||
| GELOGE(FAILED, "Update output desc fail."); | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Update Data node in Subgraph. | |||
| /// @param [in] const NodePtr &data: data in Subgraph. | |||
| /// @param [in] size_t index: The batch index. | |||
| /// @param [in] size_t batch_index: The batch index. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::UpdateSubgraphData(const NodePtr &data, size_t index) { | |||
| Status MultiBatchClonePass::UpdateSubgraphData(const NodePtr &data, size_t batch_index) { | |||
| int node_index = -1; | |||
| if (!AttrUtils::GetInt(data->GetOpDesc(), ATTR_NAME_INDEX, node_index)) { | |||
| GELOGE(FAILED, "Failed to get index from data[%s]", data->GetName().c_str()); | |||
| @@ -545,6 +896,8 @@ Status MultiBatchClonePass::UpdateSubgraphData(const NodePtr &data, size_t index | |||
| auto data_shape = NodeUtils::GetOutputDesc(*data, kDataOutIndex).GetShape(); | |||
| const auto &dims = data_shape.GetDims(); | |||
| GELOGD("Start update shape of %s , batch index is %zu, dims is %s.", data->GetName().c_str(), batch_index, | |||
| formats::JoinToString(dims).c_str()); | |||
| if (std::all_of(dims.begin(), dims.end(), [](int64_t val) { return val >= 0; })) { | |||
| return SUCCESS; | |||
| } | |||
| @@ -559,35 +912,77 @@ Status MultiBatchClonePass::UpdateSubgraphData(const NodePtr &data, size_t index | |||
| } | |||
| auto parent_name = data_name.substr(0, pos); | |||
| return SetShapeToData(data_to_dynamic_info_.at(parent_name).at(index), data, data_shape); | |||
| return SetShapeToData(data_to_dynamic_info_.at(parent_name).at(batch_index), data, data_shape, kDataOutIndex); | |||
| } | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Set max shape to Data node in root graph. | |||
| /// @param [in] const std::vector<int64_t> &shapes: dims of shape. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @param [in] GeShape &data_shape: dims of data node. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::SetShapeToData(const vector<int64_t> &shapes, const NodePtr &data, GeShape &data_shape) { | |||
| // must not be error, the calc result has been checked in function InsertSwitchNForData | |||
| if (multibatch::CalcShape(shapes, data_shape) != SUCCESS) { | |||
| return INTERNAL_ERROR; | |||
| Status MultiBatchClonePass::CreateOriGraph(const ComputeGraphPtr &graph) { | |||
| if (data_count_from_getnext_ == 0) { | |||
| GELOGD("No need to change original graph without getnext node."); | |||
| return SUCCESS; | |||
| } | |||
| if (NodeUtils::UpdateInputShape(*data, kDataInIndex, data_shape) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to update input shape for data %s", data->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| GELOGD("Start change original graph: %s when exit getnext node.", graph->GetName().c_str()); | |||
| size_t data_index = all_data_nodes_.size() - kNumOfGetnextNode; | |||
| for (const auto &node : graph->GetDirectNode()) { | |||
| if (IsGetNextType(node)) { | |||
| for (size_t out_index = 0; out_index < data_count_from_getnext_; ++out_index, ++data_index) { | |||
| auto out_data_anchor = node->GetOutDataAnchor(out_index); | |||
| GE_IF_BOOL_EXEC(out_data_anchor == nullptr, continue); | |||
| NodePtr data_node = CreateDataNode(graph, out_data_anchor, data_index); | |||
| GE_IF_BOOL_EXEC(data_node == nullptr, GELOGE(INTERNAL_ERROR, "Create %zu data node failed.", | |||
| out_data_anchor->GetIdx()); return INTERNAL_ERROR); | |||
| for (auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) { | |||
| GE_IF_BOOL_EXEC(in_anchor == nullptr, continue); | |||
| NodePtr dst_node = in_anchor->GetOwnerNode(); | |||
| if (GraphUtils::RemoveEdge(out_data_anchor, in_anchor) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to remove edge between %s to %s", node->GetName().c_str(), | |||
| dst_node->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| if (GraphUtils::AddEdge(data_node->GetOutDataAnchor(0), dst_node->GetInDataAnchor(in_anchor->GetIdx())) != | |||
| GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to add edge between %s to %s", data_node->GetName().c_str(), | |||
| dst_node->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| } | |||
| } | |||
| if (graph->RemoveNode(node) != GRAPH_SUCCESS) { | |||
| GELOGE(GRAPH_FAILED, "Remove node %s failed!", node->GetName().c_str()); | |||
| return GRAPH_FAILED; | |||
| } | |||
| break; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| if (NodeUtils::UpdateOutputShape(*data, kDataOutIndex, data_shape) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Failed to update output shape for data %s", data->GetName().c_str()); | |||
| return INTERNAL_ERROR; | |||
| NodePtr MultiBatchClonePass::CreateDataNode(const ComputeGraphPtr &graph, const OutDataAnchorPtr &out_data_anchor, | |||
| size_t data_index) { | |||
| size_t out_anchor_index = out_data_anchor->GetIdx(); | |||
| std::string node_name = out_data_anchor->GetOwnerNode()->GetName() + "_" + std::to_string(out_anchor_index); | |||
| OpDescPtr op_desc = MakeShared<OpDesc>(node_name, DATA); | |||
| if (op_desc == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Create data node failed."); | |||
| return nullptr; | |||
| } | |||
| (void)AttrUtils::SetInt(op_desc, ATTR_NAME_INDEX, data_index); | |||
| GELOGI("Update %s input/output shape to %s", data->GetName().c_str(), formats::ShapeToString(data_shape).c_str()); | |||
| return SUCCESS; | |||
| OpDescPtr getnext_op_desc = out_data_anchor->GetOwnerNode()->GetOpDesc(); | |||
| if (getnext_op_desc == nullptr) { | |||
| GELOGE(OUT_OF_MEMORY, "Op desc of %s is nullptr.", out_data_anchor->GetOwnerNode()->GetName().c_str()); | |||
| return nullptr; | |||
| } | |||
| if (op_desc->AddInputDesc(getnext_op_desc->GetOutputDesc(out_anchor_index)) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Add %s input desc failed.", op_desc->GetName().c_str()); | |||
| return nullptr; | |||
| } | |||
| if (op_desc->AddOutputDesc(getnext_op_desc->GetOutputDesc(out_anchor_index)) != GRAPH_SUCCESS) { | |||
| GELOGE(INTERNAL_ERROR, "Add %s output desc failed.", op_desc->GetName().c_str()); | |||
| return nullptr; | |||
| } | |||
| NodePtr data_node = graph->AddNode(op_desc); | |||
| GELOGD("Success create %s node.", data_node->GetName().c_str()); | |||
| return data_node; | |||
| } | |||
| /// | |||
| @@ -598,17 +993,14 @@ Status MultiBatchClonePass::SetShapeToData(const vector<int64_t> &shapes, const | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::CreateSubgraphs(const ComputeGraphPtr &graph, const ComputeGraphPtr &branch) { | |||
| GELOGD("Start create subgraphs for %s.", graph->GetName().c_str()); | |||
| const auto &op_desc = case_node_->GetOpDesc(); | |||
| for (size_t i = 0; i < batch_shapes_.size(); ++i) { | |||
| std::vector<NodePtr> input_nodes; | |||
| std::vector<NodePtr> output_nodes; | |||
| const std::string postfix = kMultiBatchNodePostfix + std::to_string(i); | |||
| ComputeGraphPtr subgraph = (i == 0) ? branch : GraphUtils::CloneGraph(branch, postfix, input_nodes, output_nodes); | |||
| if (subgraph == nullptr) { | |||
| GELOGE(FAILED, "Create multi-batch case node failed"); | |||
| return FAILED; | |||
| } | |||
| GE_IF_BOOL_EXEC(subgraph == nullptr, GELOGE(FAILED, "Create multi-batch case node failed"); return FAILED); | |||
| subgraph->SetName("Batch_" + std::to_string(i)); | |||
| subgraph->SetParentNode(case_node_); | |||
| subgraph->SetParentGraph(graph); | |||
| @@ -621,6 +1013,7 @@ Status MultiBatchClonePass::CreateSubgraphs(const ComputeGraphPtr &graph, const | |||
| op_desc->AddSubgraphName(key_name); | |||
| op_desc->SetSubgraphInstanceName(i, subgraph->GetName()); | |||
| GELOGD("The %s has %zu input, %zu output.", subgraph->GetName().c_str(), input_nodes.size(), output_nodes.size()); | |||
| for (const auto &data : input_nodes) { | |||
| GE_CHK_STATUS_RET(UpdateSubgraphData(data, i), "Update %s failed", subgraph->GetName().c_str()); | |||
| } | |||
| @@ -666,6 +1059,7 @@ Status MultiBatchClonePass::UpdateSubgraphOutput(const NodePtr &output_node) { | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status MultiBatchClonePass::PruneDirectOutput(const ComputeGraphPtr &graph) { | |||
| GELOGD("Start prune direct output."); | |||
| const auto &func_desc = case_node_->GetOpDesc(); | |||
| uint32_t unused_num = 0; | |||
| uint32_t output_num = func_desc->GetOutputsSize(); | |||
| @@ -710,6 +1104,7 @@ Status MultiBatchClonePass::PruneDirectOutput(const ComputeGraphPtr &graph) { | |||
| /// | |||
| Status MultiBatchClonePass::UpdateOutputTensor(uint32_t parent_index, uint32_t unused_num) { | |||
| if (unused_num == 0) { | |||
| GELOGD("No need to update output tensor."); | |||
| return SUCCESS; | |||
| } | |||
| @@ -36,6 +36,7 @@ class MultiBatchClonePass : public GraphPass { | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CollectIoNodes(const ComputeGraphPtr &graph); | |||
| Status InitParamsOfGetNext(const NodePtr &node); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -49,10 +50,12 @@ class MultiBatchClonePass : public GraphPass { | |||
| /// @ingroup ge | |||
| /// @brief Create index data node for root graph. | |||
| /// @param [in] const ComputeGraphPtr &graph: Root/Case graph. | |||
| /// @param [in] NodePtr node: index data node. | |||
| /// @param [in] NodePtr shape_node: index data node, DATA or GETDYNAMICDIMS type. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CreateIndexDataNode(const ComputeGraphPtr &graph, NodePtr &node); | |||
| Status CreateIndexDataNode(const ComputeGraphPtr &graph, NodePtr &shape_node); | |||
| Status CreateGetDynamicDimsNode(const ComputeGraphPtr &graph, NodePtr &shape_node); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -70,6 +73,9 @@ class MultiBatchClonePass : public GraphPass { | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CreateIndexNode(const ComputeGraphPtr &graph); | |||
| Status AddAttrForGetDynamicDims(const NodePtr &shape_node); | |||
| Status LinkGetNextToGetDynamicDims(const NodePtr &getnext_node, const NodePtr &shape_node); | |||
| Status LinkGetDynamicDimsToNetOutput(const NodePtr &output_node); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -78,39 +84,54 @@ class MultiBatchClonePass : public GraphPass { | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CreateInputNode(const ComputeGraphPtr &graph); | |||
| Status LinkEdgeForGetNext(const NodePtr &getnext_node, size_t &case_input_index); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Create Const node for root graph. | |||
| /// @param [in] const ComputeGraphPtr &graph: Root/Case graph. | |||
| /// @brief Set max shape to Data node in root graph. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CreateConstNode(const ComputeGraphPtr &graph); | |||
| Status SetMaxShape(const NodePtr &data); | |||
| Status SetMaxShapeToData(const NodePtr &node, size_t out_anchor_index); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Set max shape to Data/GetNext node in root graph. | |||
| /// @param [in] const std::vector<int64_t> &shapes: dims of shape. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @param [in] GeShape &data_shape: dims of data node. | |||
| /// @param [in] size_t out_anchor_index: out anchor index of data node. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status SetShapeToData(const std::vector<int64_t> &shapes, const NodePtr &data, GeShape &data_shape, | |||
| size_t out_anchor_index); | |||
| Status UpdateShapeOfShapeNode(const NodePtr &node, size_t out_anchor_index); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Create output node for root graph. | |||
| /// @brief Create Const node for root graph. | |||
| /// @param [in] const ComputeGraphPtr &graph: Root/Case graph. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status CreateOutputNode(const ComputeGraphPtr &graph); | |||
| Status CreateConstNode(const ComputeGraphPtr &graph); | |||
| void ChangeConstToData(); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Set max shape to Data node in root graph. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @brief Create output node for root graph. | |||
| /// @param [in] const ComputeGraphPtr &graph: Root/Case graph. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status SetMaxShapeToData(const NodePtr &data); | |||
| Status CreateOutputNode(const ComputeGraphPtr &graph); | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Update Data node in Subgraph. | |||
| /// @param [in] const NodePtr &data: data in Subgraph. | |||
| /// @param [in] size_t index: The batch index. | |||
| /// @param [in] size_t batch_index: The batch index. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status UpdateSubgraphData(const NodePtr &data, size_t index); | |||
| Status UpdateSubgraphData(const NodePtr &data, size_t batch_index); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -122,13 +143,12 @@ class MultiBatchClonePass : public GraphPass { | |||
| /// | |||
| /// @ingroup ge | |||
| /// @brief Set max shape to Data node in root graph. | |||
| /// @param [in] const std::vector<int64_t> &shapes: dims of shape. | |||
| /// @param [in] const NodePtr &data: data in Root/Case graph. | |||
| /// @param [in] GeShape &data_shape: dims of data node. | |||
| /// @brief Create nodes for root graph. | |||
| /// @param [in] const ComputeGraphPtr &graph: Original graph. | |||
| /// @return 0: SUCCESS / others: FAILED | |||
| /// | |||
| Status SetShapeToData(const std::vector<int64_t> &shapes, const NodePtr &data, GeShape &data_shape); | |||
| Status CreateOriGraph(const ComputeGraphPtr &graph); | |||
| NodePtr CreateDataNode(const ComputeGraphPtr &graph, const OutDataAnchorPtr &out_data_anchor, size_t data_index); | |||
| /// | |||
| /// @ingroup ge | |||
| @@ -168,6 +188,10 @@ class MultiBatchClonePass : public GraphPass { | |||
| std::map<string, vector<vector<int64_t>>> data_to_dynamic_info_; | |||
| NodePtr case_node_; | |||
| size_t data_count_from_getnext_ = 0; | |||
| bool getnext_sink_dynamic_dims_ = false; | |||
| NodePtr shape_node_; | |||
| std::set<NodePtr> out_control_nodes_; | |||
| }; | |||
| } // namespace ge | |||
| #endif // GE_GRAPH_PASSES_MULTI_BATCH_CLONE_PASS_H_ | |||
| @@ -204,6 +204,10 @@ Status UnusedArgsCleanPass::RemoveInputTensor(const map<ComputeGraphPtr, map<uin | |||
| GE_CHK_GRAPH_STATUS_RET(GraphUtils::RemoveEdge(out_anchor, old_anchor), "Remove edge failed"); | |||
| GELOGI("Remove edge: %s %s", out_node->GetName().c_str(), func_node->GetName().c_str()); | |||
| if (out_node->GetInDataNodes().size() == 0 && out_node->GetOutAllNodes().size() == 0) { | |||
| GE_CHK_GRAPH_STATUS_RET(out_node->GetOwnerComputeGraph()->RemoveNode(out_node), "Remove node failed: %s", | |||
| out_node->GetName().c_str()); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| } // namespace ge | |||
| @@ -37,6 +37,7 @@ | |||
| #include "graph/passes/addn_pass.h" | |||
| #include "graph/passes/aicpu_constant_folding_pass.h" | |||
| #include "graph/passes/assert_pass.h" | |||
| #include "ge/ge_api_types.h" | |||
| #ifdef ONLY_COMPILE_OPEN_SRC | |||
| #include "graph/passes/assign_remove_pass.h" | |||
| #endif | |||
| @@ -899,6 +900,160 @@ Status ProcessNetoutputNodeDynShape(NodePtr &node) { | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| long StringToLongNoThrow(const string &str) { | |||
| try { | |||
| return std::stol(str); | |||
| } catch (const std::invalid_argument) { | |||
| GELOGE(PARAM_INVALID, | |||
| "Parse shape range of input failed when transfer from string to int64. Given %s, while correct example: " | |||
| "\"[1~20,3,3~6,-1],[1~20,3,3~6,-1]\"", | |||
| str.c_str()); | |||
| return PARAM_INVALID; | |||
| } catch (const std::out_of_range) { | |||
| GELOGE(PARAM_INVALID, | |||
| "Parse shape range of input failed when transfer from string to int64. Given %s, while correct example: " | |||
| "\"[1~20,3,3~6,-1],[1~20,3,3~6,-1]\"", | |||
| str.c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| } | |||
| /** | |||
| * Parser shape_range from string to vector | |||
| * shape_range from option normally is "[1~20,3,3~6,-1],[1~20,3,3~6,-1]" | |||
| * @param shape_range | |||
| */ | |||
| Status ParseDynamicInputShapeRange(const std::string &shape_range, | |||
| std::vector<std::vector<std::pair<int64_t, int64_t>>> &range) { | |||
| if (shape_range.size() < 2) { | |||
| GELOGE(PARAM_INVALID, "Shape range %s is invalid.", shape_range.c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| // different shape_range of single input are split by ']' | |||
| vector<string> shape_range_set = ge::StringUtils::Split(shape_range, ']'); | |||
| if (shape_range_set.empty()) { | |||
| GELOGE(PARAM_INVALID, "Shape range %s is not valid. Correct example: \"[1~20,3,3~6,-1],[1~20,3,3~6,-1]\"", | |||
| shape_range.c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| for (auto &shape_range_str : shape_range_set) { | |||
| if (shape_range_str.empty()) { | |||
| continue; | |||
| } | |||
| // trim start bytes, after that, single input should be "1~20,3,3~6,-1" | |||
| if (ge::StringUtils::StartWith(shape_range_str, "[")) { | |||
| shape_range_str = shape_range_str.substr(1, shape_range_str.size()); | |||
| } | |||
| if (ge::StringUtils::StartWith(shape_range_str, ",")) { | |||
| shape_range_str = shape_range_str.substr(2, shape_range_str.size()); | |||
| } | |||
| // parse shape_range of single input. eg. "1~20,3,3~6,-1" | |||
| std::vector<std::pair<int64_t, int64_t>> range_of_single_input; | |||
| vector<string> dim_range_set = ge::StringUtils::Split(shape_range_str, ','); | |||
| for (const auto &range_pair_str : dim_range_set) { | |||
| vector<string> range_pair_set = ge::StringUtils::Split(range_pair_str, '~'); | |||
| pair<int64_t, int64_t> range_pair; | |||
| if (range_pair_set.size() == 1) { | |||
| // fix dim | |||
| auto range_value = StringToLongNoThrow(range_pair_set.at(0).c_str()); | |||
| if (range_value < 0) { | |||
| range_pair = std::make_pair(0, range_value); | |||
| } else { | |||
| range_pair = std::make_pair(range_value, range_value); | |||
| } | |||
| } else if (range_pair_set.size() == 2) { | |||
| // unknown dim, should get range. | |||
| auto range_left = StringToLongNoThrow(range_pair_set.at(0).c_str()); | |||
| auto range_right = StringToLongNoThrow(range_pair_set.at(1).c_str()); | |||
| range_pair = std::make_pair(range_left, range_right); | |||
| } else { | |||
| GELOGE(PARAM_INVALID, | |||
| "Shape range of input is invalid. Given %s, while correct example: \"[1~20,3,3~6,-1],[1~20,3,3~6,-1]\"", | |||
| shape_range.c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| range_of_single_input.emplace_back(range_pair); | |||
| } | |||
| range.emplace_back(range_of_single_input); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GetDynamicInputShapeRange(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option, | |||
| vector<vector<std::pair<int64_t, int64_t>>> &range_vec) { | |||
| auto mode_iter = graph_option.find(OPTION_EXEC_DYNAMIC_EXECUTE_MODE); | |||
| if (mode_iter == graph_option.end()) { | |||
| GELOGD("Graph Option: Can not find %s option in graph options.", OPTION_EXEC_DYNAMIC_EXECUTE_MODE); | |||
| return SUCCESS; | |||
| } | |||
| GELOGD("Graph Option: dynamic_input_mode value is %s.", mode_iter->second.c_str()); | |||
| if (mode_iter->second != "dynamic_execute") { | |||
| return SUCCESS; | |||
| } | |||
| auto iter = graph_option.find(OPTION_EXEC_DATA_INPUTS_SHAPE_RANGE); | |||
| if (iter == graph_option.end()) { | |||
| GELOGE(PARAM_INVALID, "Graph option %s is required when %s is dynamic_execute", OPTION_EXEC_DATA_INPUTS_SHAPE_RANGE, | |||
| OPTION_EXEC_DYNAMIC_EXECUTE_MODE); | |||
| return PARAM_INVALID; | |||
| } | |||
| GELOGD("GraphOption: dynamic_inputs_shape_range value is %s.", iter->second.c_str()); | |||
| auto ret = ParseDynamicInputShapeRange(iter->second, range_vec); | |||
| GE_CHK_STATUS_RET(ret, "Parse dynamic input shape range failed."); | |||
| if (range_vec.size() != user_input.size()) { | |||
| GELOGE(PARAM_INVALID, "Dynamic input shape range size is %zu, inputs size is %zu. Not match.", range_vec.size(), | |||
| user_input.size()); | |||
| return PARAM_INVALID; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UpdateDynamicInputShapeRange(const ge::GeAttrValue::INT index, | |||
| const vector<vector<std::pair<int64_t, int64_t>>> &range_vec, OpDescPtr &op, | |||
| GeTensorDesc &desc) { | |||
| auto origin_shape = desc.GetShape(); | |||
| auto current_shape_range_vec = range_vec.at(index); | |||
| if (current_shape_range_vec.size() != origin_shape.GetDimNum()) { | |||
| GELOGE(PARAM_INVALID, "Given shape_range dim num is %zu, current dim num is %zu, not match.Pleace Check.", | |||
| current_shape_range_vec.size(), origin_shape.GetDimNum()); | |||
| return PARAM_INVALID; | |||
| } | |||
| for (size_t i = 0; i < origin_shape.GetDimNum(); ++i) { | |||
| if (current_shape_range_vec.at(i).first == current_shape_range_vec.at(i).second) { | |||
| // given shape_range is known dim, check is same as origin or not | |||
| if (origin_shape.GetDim(i) != current_shape_range_vec.at(i).first) { | |||
| GELOGE(PARAM_INVALID, "Given shape range is %ld, current dim shape is %ld, not match.Pleace Check.", | |||
| current_shape_range_vec.at(i).first, origin_shape.GetDim(i)); | |||
| return PARAM_INVALID; | |||
| } | |||
| origin_shape.SetDim(i, current_shape_range_vec.at(i).first); | |||
| } else { | |||
| origin_shape.SetDim(i, -1); | |||
| } | |||
| } | |||
| desc.SetShape(origin_shape); | |||
| desc.SetShapeRange(current_shape_range_vec); | |||
| int64_t dynamic_shape_size = 1; | |||
| for (const auto range_pair : range_vec.at(index)) { | |||
| FMK_INT64_MULCHECK(dynamic_shape_size, range_pair.second); | |||
| dynamic_shape_size *= range_pair.second; | |||
| } | |||
| auto data_type_size = GetSizeByDataType(desc.GetDataType()); | |||
| if (data_type_size < 0) { | |||
| GELOGE(PARAM_INVALID, "Input data type is %s, is not supported.", | |||
| TypeUtils::DataTypeToSerialString(desc.GetDataType()).c_str()); | |||
| return PARAM_INVALID; | |||
| } | |||
| FMK_INT64_MULCHECK(dynamic_shape_size, data_type_size); | |||
| dynamic_shape_size *= data_type_size; | |||
| GELOGI("In dynamic_execute mode ,set input %s shape range size %ld", op->GetName().c_str(), dynamic_shape_size); | |||
| ge::TensorUtils::SetSize(desc, dynamic_shape_size); | |||
| graphStatus graph_ret = op->UpdateInputDesc(0, desc); | |||
| GE_CHK_STATUS_RET(graph_ret, "UpdateInputDesc fail, graph ret: %u", graph_ret); | |||
| graph_ret = op->UpdateOutputDesc(0, desc); | |||
| GE_CHK_STATUS_RET(graph_ret, "UpdateInputDesc fail, graph ret: %u", graph_ret); | |||
| return SUCCESS; | |||
| } | |||
| } // namespace | |||
| GraphPrepare::GraphPrepare() : compute_graph_(nullptr) {} | |||
| @@ -1103,7 +1258,11 @@ Status GraphPrepare::AdjustDataOpOutput(const NodePtr &node) { | |||
| return SUCCESS; | |||
| } | |||
| Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input) { | |||
| Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option) { | |||
| // Get shape range of input in dynamic_execute mode | |||
| vector<vector<std::pair<int64_t,int64_t>>> dynamic_shape_range_vec; | |||
| auto ret = GetDynamicInputShapeRange(user_input, graph_option, dynamic_shape_range_vec); | |||
| GE_CHK_STATUS_RET(ret, "Graph option is not right on Dynamic execute mode."); | |||
| compute_graph_->SaveDataFormat(ge::TypeUtils::DomiFormatToFormat(GetLocalOmgContext().format)); | |||
| for (NodePtr &input_node : compute_graph_->GetDirectNode()) { | |||
| GE_CHECK_NOTNULL(input_node); | |||
| @@ -1186,6 +1345,12 @@ Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input) { | |||
| return graph_ret; | |||
| } | |||
| if (!dynamic_shape_range_vec.empty()) { | |||
| ret = UpdateDynamicInputShapeRange(index, dynamic_shape_range_vec, op, desc); | |||
| GE_CHK_STATUS_RET(ret, "Fail to update dynamic input shape range on %s.", op->GetName().c_str()); | |||
| continue; | |||
| } | |||
| if (!options_.train_graph_flag) { | |||
| Status ret = AdjustDataOpOutput(input_node); | |||
| GE_IF_BOOL_EXEC(ret != SUCCESS, GELOGE(ret, "AdjustDataOpOutput fail, ret:%u", ret); return ret); | |||
| @@ -1359,17 +1524,17 @@ Status GraphPrepare::SaveOriginalGraphToOmModel() { | |||
| GELOGI("Prepare %s on graph %s success.", name, compute_graph->GetName().c_str()); \ | |||
| } while (0) | |||
| Status GraphPrepare::PrepareDynShape(ConstGraphPtr graph, const std::vector<GeTensor> &user_input, | |||
| Status GraphPrepare::PrepareDynShape(const GraphNodePtr &graph_node, const std::vector<GeTensor> &user_input, | |||
| ge::ComputeGraphPtr &compute_graph, uint64_t session_id) { | |||
| GE_CHECK_NOTNULL(graph); | |||
| GE_CHECK_NOTNULL(graph_node->GetGraph()); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| GetLocalOmgContext().type = static_cast<domi::FrameworkType>(options_.framework_type); | |||
| const Graph &const_graph = *graph; | |||
| const Graph &const_graph = *graph_node->GetGraph(); | |||
| PP_RUN("Init", Init, const_graph, session_id); | |||
| PP_RUN("SetRtContext", SetRtContext, rtContext_t(), RT_CTX_GEN_MODE); | |||
| PP_RUN_AND_DUMP("CheckAndUpdateInput", CheckAndUpdateInput, user_input); | |||
| PP_RUN_AND_DUMP("CheckAndUpdateInput", CheckAndUpdateInput, user_input, graph_node->GetOptions()); | |||
| PP_RUN_AND_DUMP("GraphEquivalentTransformation", GraphEquivalentTransformation); | |||
| PP_RUN_AND_DUMP("ProcessOutput", ProcessNetOutput); | |||
| PP_RUN_AND_DUMP("ProcessMultiBatch", multibatch::ProcessMultiBatch, compute_graph_); | |||
| @@ -1834,7 +1999,7 @@ Status GraphPrepare::ProcessNetOutput() { | |||
| return SUCCESS; | |||
| } | |||
| Status GraphPrepare::CheckAndUpdateInput(const std::vector<GeTensor> &user_input) { | |||
| Status GraphPrepare::CheckAndUpdateInput(const std::vector<GeTensor> &user_input,const std::map<string,string> &graph_option) { | |||
| compute_graph_->SetInputSize(user_input.size()); | |||
| if (user_input.empty()) { | |||
| return SUCCESS; | |||
| @@ -1846,7 +2011,7 @@ Status GraphPrepare::CheckAndUpdateInput(const std::vector<GeTensor> &user_input | |||
| return ret; | |||
| } | |||
| ret = UpdateInput(user_input); | |||
| ret = UpdateInput(user_input, graph_option); | |||
| if (ret != SUCCESS) { | |||
| GELOGE(ret, "UpdateInput fail, ret:%u", ret); | |||
| return ret; | |||
| @@ -45,7 +45,7 @@ class GraphPrepare { | |||
| virtual ~GraphPrepare(); | |||
| GraphPrepare(const GraphPrepare &in) = delete; | |||
| GraphPrepare &operator=(const GraphPrepare &in) = delete; | |||
| Status PrepareDynShape(ConstGraphPtr graph, | |||
| Status PrepareDynShape(const GraphNodePtr &graph_node, | |||
| const std::vector<GeTensor> &user_input, | |||
| ge::ComputeGraphPtr &compute_graph, | |||
| uint64_t session_id = 0); | |||
| @@ -63,8 +63,8 @@ class GraphPrepare { | |||
| Status CheckRefOp(); | |||
| Status SetRtContext(rtContext_t rt_context, rtCtxMode_t mode); | |||
| Status AdjustDataOpOutput(const NodePtr &node); | |||
| Status UpdateInput(const std::vector<GeTensor> &user_input); | |||
| Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input); | |||
| Status UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option); | |||
| Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option); | |||
| Status CheckConstOp(); | |||
| Status VerifyConstOp(const NodePtr &node); | |||
| Status CheckUserInput(const std::vector<GeTensor> &user_input); | |||
| @@ -1692,13 +1692,11 @@ Status MultiBatchGraphCopyer::LinkToNodeOutBranch(const NodePtr &node) { | |||
| } | |||
| Status ProcessMultiBatch(ComputeGraphPtr &graph) { | |||
| if (GetLocalOmgContext().dynamic_node_type.empty()) { | |||
| const char *multi_batch_with_switchn = std::getenv("MULTI_BATCH_WITH_SWITCHN"); | |||
| if (multi_batch_with_switchn == nullptr) { | |||
| PassManager pass_manager; | |||
| GE_CHK_STATUS_RET(pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass)); | |||
| return pass_manager.Run(graph); | |||
| } | |||
| const char *multi_batch_with_switchn = std::getenv("MULTI_BATCH_WITH_SWITCHN"); | |||
| if (multi_batch_with_switchn == nullptr) { | |||
| PassManager pass_manager; | |||
| GE_CHK_STATUS_RET(pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass)); | |||
| return pass_manager.Run(graph); | |||
| } | |||
| if (!GetLocalOmgContext().need_multi_batch) { | |||
| GELOGI("No need to process_multi for no_train graph."); | |||
| @@ -99,9 +99,8 @@ Status DistinguishGetNextAndData(ComputeGraphPtr &graph, vector<NodePtr> &data_n | |||
| } | |||
| GELOGI("Data count is %zu, getnext nosink count is %zu, getnext sink count is %zu.", data_nodes.size(), | |||
| getnext_nosink_nodes.size(), getnext_sink_nodes.size()); | |||
| GE_IF_BOOL_EXEC(!graph->SetExtAttr(kExtAttrDataNodes, data_nodes), GELOGW("Set data nodes attr failed.");) | |||
| GE_IF_BOOL_EXEC(!graph->SetExtAttr(kExtAttrGetNextNoSink, getnext_nosink_nodes), | |||
| GELOGW("Set getnext nosink nodes attr failed.");) | |||
| GetLocalOmgContext().data_nodes = data_nodes; | |||
| GetLocalOmgContext().getnext_nosink_nodes = getnext_nosink_nodes; | |||
| return SUCCESS; | |||
| } | |||
| @@ -98,10 +98,10 @@ Status HybridModelAsyncExecutor::Init() { | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelAsyncExecutor::PreRun(InputData ¤t_data) { | |||
| Status HybridModelAsyncExecutor::PreRun(InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { | |||
| GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data"); | |||
| RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End"); | |||
| GE_CHK_STATUS_RET(CopyInputData(current_data), "Failed to copy input data to model"); | |||
| GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model"); | |||
| RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End"); | |||
| return SUCCESS; | |||
| } | |||
| @@ -126,14 +126,9 @@ Status HybridModelAsyncExecutor::RunInternal() { | |||
| InputData current_data = data_wrapper->GetInput(); | |||
| GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index); | |||
| HybridModelExecutor::ExecuteArgs args; | |||
| args.inputs.resize(input_tensors_.size()); | |||
| for (auto &it : input_tensors_) { | |||
| args.inputs[it.first] = it.second; | |||
| } | |||
| RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_); | |||
| ret = PreRun(current_data); | |||
| HybridModelExecutor::ExecuteArgs args; | |||
| ret = PreRun(current_data, args); | |||
| GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( | |||
| ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput()); | |||
| CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC); | |||
| @@ -202,7 +197,9 @@ Status HybridModelAsyncExecutor::SyncVarData() { | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelAsyncExecutor::CopyInputData(const InputData ¤t_data) { | |||
| Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { | |||
| args.inputs.resize(input_tensors_.size()); | |||
| args.input_desc.resize(input_tensor_desc_.size()); | |||
| const std::vector<DataBuffer> &blobs = current_data.blobs; | |||
| for (const auto &it : input_tensors_) { | |||
| auto input_index = it.first; | |||
| @@ -230,6 +227,13 @@ Status HybridModelAsyncExecutor::CopyInputData(const InputData ¤t_data) { | |||
| data_buf.data, | |||
| data_buf.length, | |||
| RT_MEMCPY_HOST_TO_DEVICE)); | |||
| args.inputs[input_index] = input_tensor; | |||
| if (is_input_dynamic_[input_index]) { | |||
| auto &tensor_desc = input_tensor_desc_[input_index]; | |||
| tensor_desc->SetShape(GeShape(current_data.shapes[input_index])); | |||
| args.input_desc[input_index] = tensor_desc; | |||
| GELOGD("Update shape of input[%u] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str()); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| @@ -240,7 +244,10 @@ Status HybridModelAsyncExecutor::InitInputTensors() { | |||
| GE_CHECK_NOTNULL(allocator); | |||
| int input_index = 0; | |||
| for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) { | |||
| GELOGD("Init input[%u], node = %s", input_index, input_node->NodeName().c_str()); | |||
| GELOGD("Init input[%u], node = %s, is_dynamic = %d", | |||
| input_index, | |||
| input_node->NodeName().c_str(), | |||
| input_node->is_dynamic); | |||
| auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex); | |||
| GE_CHECK_NOTNULL(output_desc); | |||
| int64_t tensor_size = 0; | |||
| @@ -258,6 +265,8 @@ Status HybridModelAsyncExecutor::InitInputTensors() { | |||
| TensorValue tensor(shared_ptr<TensorBuffer>(buffer.release())); | |||
| tensor.SetName("Input_" + input_node->NodeName()); | |||
| input_tensors_.emplace(input_index, tensor); | |||
| input_tensor_desc_.emplace(input_index, output_desc); | |||
| is_input_dynamic_.push_back(input_node->is_dynamic); | |||
| input_index += 1; | |||
| } | |||
| @@ -402,18 +411,12 @@ Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector< | |||
| buffer.data = const_cast<uint8_t *>(tensor.GetData().GetData()); | |||
| buffer.length = tensor.GetData().size(); | |||
| input_data.blobs.emplace_back(buffer); | |||
| input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims()); | |||
| } | |||
| GE_CHK_STATUS_RET(CopyInputData(input_data), "Failed to copy input data to model"); | |||
| GELOGD("Done copying input data successfully."); | |||
| HybridModelExecutor::ExecuteArgs args; | |||
| args.inputs.resize(input_tensors_.size()); | |||
| args.input_desc.resize(input_tensors_.size()); | |||
| for (auto &it : input_tensors_) { | |||
| args.inputs[it.first] = it.second; | |||
| args.input_desc[it.first] = MakeShared<GeTensorDesc>(inputs[it.first].GetTensorDesc()); | |||
| } | |||
| GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model"); | |||
| GELOGD("Done copying input data successfully."); | |||
| GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); | |||
| std::vector<ge::OutputTensorInfo> output_tensor_info_list; | |||
| @@ -70,9 +70,9 @@ class HybridModelAsyncExecutor { | |||
| Status OnComputeDone(uint32_t data_index, uint32_t result_code, std::vector<ge::OutputTensorInfo> &outputs); | |||
| Status PreRun(InputData ¤t_data); | |||
| Status PreRun(InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args); | |||
| Status CopyInputData(const InputData ¤t_data); | |||
| Status PrepareInputs(const InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args); | |||
| std::mutex mu_; | |||
| HybridModel *model_; | |||
| @@ -86,6 +86,8 @@ class HybridModelAsyncExecutor { | |||
| rtStream_t stream_ = nullptr; | |||
| std::map<uint32_t, TensorValue> input_tensors_; | |||
| std::map<uint32_t, GeTensorDescPtr> input_tensor_desc_; | |||
| std::vector<bool> is_input_dynamic_; | |||
| std::shared_ptr<ModelListener> listener_; | |||
| }; | |||
| } // namespace hybrid | |||
| @@ -221,6 +221,8 @@ Status NodeDoneCallback::GetGraphDescInfo(const NodePtr node, const HybridModel | |||
| tmp_compute_graph_info.output_shape.emplace_back(output_desc.GetShape().GetDims()); | |||
| tmp_compute_graph_info.output_data_type.emplace_back(output_desc.GetDataType()); | |||
| } | |||
| tmp_compute_graph_info.task_id = context_->GetTaskId(); | |||
| tmp_compute_graph_info.stream_id = context_->GetStreamId(); | |||
| compute_graph_info.emplace_back(tmp_compute_graph_info); | |||
| GELOGD("GetComputeGraphInfo of node [%s] end.", node->GetName().c_str()); | |||
| } | |||
| @@ -35,11 +35,22 @@ | |||
| namespace ge { | |||
| namespace hybrid { | |||
| using domi::LogTimeStampDef; | |||
| using domi::TaskDef; | |||
| namespace { | |||
| const uint32_t kSubgraphIndex = 0U; | |||
| const uint32_t kVarOutputIndex = 0U; | |||
| const uint64_t kProfilingFpStartLogid = 1U; | |||
| const uint64_t kProfilingBpEndLogid = 2U; | |||
| const uint64_t kProfilingIterEndLogid = 65535U; | |||
| const int kBytes = 8; | |||
| const char *const kOwnerGraphIsUnknown = "OwnerGraphIsUnknown"; | |||
| const char *const kProfilingGraph = "ProfilingGraph"; | |||
| const char *const kProfilingFpNode = "ProfilingFpNode"; | |||
| const char *const kProfilingBpNode = "ProfilingBpNode"; | |||
| const char *const kProfilingEndNode = "ProfilingEndNode"; | |||
| const char *const kProfilingArNode = "ProfilingAllReduceNode"; | |||
| const char *const kEngineNameRts = "DNN_VM_RTS_OP_STORE"; | |||
| Status SetOutputNameAttr(ComputeGraph &graph) { | |||
| vector<string> output_names; | |||
| @@ -1531,6 +1542,188 @@ Status HybridModelBuilder::RecoverGraphUnknownFlag() { | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::GenerateFpProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list) { | |||
| uint64_t jobid_log_id = ge::GetContext().TraceId(); | |||
| GELOGD("The first FP operator is %s,, job_id %lu", op_desc->GetName().c_str(), jobid_log_id); | |||
| TaskDef job_task_def; | |||
| job_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| job_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *job_log_def = job_task_def.mutable_log_timestamp(); | |||
| if (job_log_def != nullptr) { | |||
| job_log_def->set_logid(jobid_log_id); | |||
| job_log_def->set_notify(false); | |||
| } | |||
| task_def_list.emplace_back(job_task_def); | |||
| TaskDef fp_task_def; | |||
| fp_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| fp_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *fp_log_def = fp_task_def.mutable_log_timestamp(); | |||
| if (fp_log_def != nullptr) { | |||
| fp_log_def->set_logid(kProfilingFpStartLogid); | |||
| fp_log_def->set_notify(false); | |||
| } | |||
| task_def_list.emplace_back(fp_task_def); | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::GenerateArProfilingTask(const OpDescPtr &op_desc, int64_t log_id, | |||
| vector<domi::TaskDef> &task_def_list) { | |||
| TaskDef ar_task_def; | |||
| ar_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| ar_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *ar_log_def = ar_task_def.mutable_log_timestamp(); | |||
| if (ar_log_def != nullptr) { | |||
| ar_log_def->set_logid(log_id); | |||
| ar_log_def->set_notify(false); | |||
| } | |||
| task_def_list.emplace_back(ar_task_def); | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::GenerateBpProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list) { | |||
| TaskDef bp_task_def; | |||
| bp_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| bp_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *bp_log_def = bp_task_def.mutable_log_timestamp(); | |||
| GE_CHECK_NOTNULL(bp_log_def); | |||
| bp_log_def->set_logid(kProfilingBpEndLogid); | |||
| bp_log_def->set_notify(false); | |||
| task_def_list.emplace_back(bp_task_def); | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::GenerateEndProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list) { | |||
| TaskDef end_task_def; | |||
| end_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); | |||
| end_task_def.set_stream_id(op_desc->GetStreamId()); | |||
| LogTimeStampDef *end_log_def = end_task_def.mutable_log_timestamp(); | |||
| GE_CHECK_NOTNULL(end_log_def); | |||
| end_log_def->set_logid(kProfilingIterEndLogid); | |||
| end_log_def->set_notify(true); | |||
| task_def_list.emplace_back(end_task_def); | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::CreateProfilingNodeBefore(GraphItem &graph_item, const NodePtr &node) { | |||
| GE_CHECK_NOTNULL(node); | |||
| const OpDescPtr &op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| const auto &compute_graph = MakeShared<ComputeGraph>(kProfilingGraph); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| NodePtr node_ptr = nullptr; | |||
| vector<domi::TaskDef> task_def_list; | |||
| // create fp node | |||
| bool is_insert_fp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_FP_PROFILILNG_TASK, is_insert_fp_profiling_task); | |||
| if (is_insert_fp_profiling_task) { | |||
| (void)GenerateFpProfilingTask(op_desc, task_def_list); | |||
| auto fp_desc = MakeShared<OpDesc>(kProfilingFpNode, PROFILINGTRAININGTRACE); | |||
| GE_CHECK_NOTNULL(fp_desc); | |||
| fp_desc->SetOpKernelLibName(kEngineNameRts); | |||
| node_ptr = compute_graph->AddNode(fp_desc); | |||
| GELOGD("Create fp profiling node success before."); | |||
| } | |||
| // creat all reduce start node | |||
| bool is_insert_bp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); | |||
| bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); | |||
| if (is_all_reduce && is_insert_bp_profiling_task) { | |||
| int64_t log_id = 0; | |||
| (void)ge::AttrUtils::GetInt(op_desc, ATTR_NAME_INSERT_PROFILILNG_TASK_LOG_ID, log_id); | |||
| GELOGD("All reduce node profiling task log id: %ld before", log_id); | |||
| (void) GenerateArProfilingTask(op_desc, log_id, task_def_list); | |||
| string op_name = string(kProfilingArNode) + std::to_string(log_id); | |||
| auto ar_desc_start = MakeShared<OpDesc>(op_name, PROFILINGTRAININGTRACE); | |||
| GE_CHECK_NOTNULL(ar_desc_start); | |||
| ar_desc_start->SetOpKernelLibName(kEngineNameRts); | |||
| node_ptr = compute_graph->AddNode(ar_desc_start); | |||
| GELOGD("Create all reduce start profiling node success before."); | |||
| } | |||
| if (node_ptr != nullptr) { | |||
| for (const auto &task_def : task_def_list) { | |||
| hybrid_model_.task_defs_[node_ptr].emplace_back(task_def); | |||
| } | |||
| NodeItem *node_item = nullptr; | |||
| GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(node_ptr, &node_item)); | |||
| node_item->input_start = 0; | |||
| node_item->output_start = 0; | |||
| graph_item.node_items_.emplace_back(node_item); | |||
| } else { | |||
| GELOGD("No need to create profiling node before."); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::CreateProfilingNodeAfter(GraphItem &graph_item, const NodePtr &node) { | |||
| GE_CHECK_NOTNULL(node); | |||
| const OpDescPtr &op_desc = node->GetOpDesc(); | |||
| GE_CHECK_NOTNULL(op_desc); | |||
| const auto &compute_graph = MakeShared<ComputeGraph>(kProfilingGraph); | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| NodePtr node_ptr = nullptr; | |||
| vector<domi::TaskDef> task_def_list; | |||
| // Create all reduce end node | |||
| bool is_insert_bp_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); | |||
| bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); | |||
| if (is_all_reduce && is_insert_bp_profiling_task) { | |||
| int64_t log_id = 0; | |||
| (void)ge::AttrUtils::GetInt(op_desc, ATTR_NAME_INSERT_PROFILILNG_TASK_LOG_ID, log_id); | |||
| GELOGD("All reduce node profiling task log id: %ld after", log_id); | |||
| (void) GenerateArProfilingTask(op_desc, log_id + 1, task_def_list); | |||
| string op_name = string(kProfilingArNode) + std::to_string(log_id + 1); | |||
| auto ar_desc_end = MakeShared<OpDesc>(op_name, PROFILINGTRAININGTRACE); | |||
| GE_CHECK_NOTNULL(ar_desc_end); | |||
| ar_desc_end->SetOpKernelLibName(kEngineNameRts); | |||
| node_ptr = compute_graph->AddNode(ar_desc_end); | |||
| GELOGD("Create all reduce end profiling node success after."); | |||
| } | |||
| // create bp node | |||
| if (!is_all_reduce && is_insert_bp_profiling_task) { | |||
| (void) GenerateBpProfilingTask(op_desc, task_def_list); | |||
| auto bp_op_desc = MakeShared<OpDesc>(kProfilingBpNode, PROFILINGTRAININGTRACE); | |||
| GE_CHECK_NOTNULL(bp_op_desc); | |||
| bp_op_desc->SetOpKernelLibName(kEngineNameRts); | |||
| node_ptr = compute_graph->AddNode(bp_op_desc); | |||
| GELOGD("Create bp profiling node success after."); | |||
| } | |||
| // create end node | |||
| bool is_insert_end_profiling_task = false; | |||
| (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_END_PROFILILNG_TASK, is_insert_end_profiling_task); | |||
| if (is_insert_end_profiling_task) { | |||
| (void)GenerateEndProfilingTask(op_desc, task_def_list); | |||
| auto end_desc = MakeShared<OpDesc>(kProfilingEndNode, PROFILINGTRAININGTRACE); | |||
| GE_CHECK_NOTNULL(end_desc); | |||
| end_desc->SetOpKernelLibName(kEngineNameRts); | |||
| node_ptr = compute_graph->AddNode(end_desc); | |||
| GELOGD("Create end profiling node success after."); | |||
| } | |||
| if (node_ptr != nullptr) { | |||
| for (const auto &task_def : task_def_list) { | |||
| hybrid_model_.task_defs_[node_ptr].emplace_back(task_def); | |||
| } | |||
| NodeItem *node_item = nullptr; | |||
| GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(node_ptr, &node_item)); | |||
| node_item->input_start = 0; | |||
| node_item->output_start = 0; | |||
| graph_item.node_items_.emplace_back(node_item); | |||
| } else { | |||
| GELOGD("No need to create profiling node after."); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status HybridModelBuilder::LoadDynamicSubgraph(ComputeGraph &graph, bool is_root_graph) { | |||
| GELOGD("Start to load subgraph [%s]", graph.GetName().c_str()); | |||
| // for known partitioned call, load all nodes | |||
| @@ -1567,8 +1760,9 @@ Status HybridModelBuilder::LoadDynamicSubgraph(ComputeGraph &graph, bool is_root | |||
| graph_item->output_node_ = node_item; | |||
| GE_CHK_STATUS_RET_NOLOG(BuildOutputMapping(*graph_item, *node_item, is_root_graph)); | |||
| } | |||
| GE_CHK_STATUS_RET_NOLOG(CreateProfilingNodeBefore(*graph_item, node)); | |||
| graph_item->node_items_.emplace_back(node_item); | |||
| GE_CHK_STATUS_RET_NOLOG(CreateProfilingNodeAfter(*graph_item, node)); | |||
| // parse var outputs | |||
| GE_CHK_STATUS_RET_NOLOG(ParseVarOutputs(*node_item)); | |||
| GELOGD("NodeItem created: %s", node_item->DebugString().c_str()); | |||
| @@ -79,6 +79,12 @@ class HybridModelBuilder { | |||
| Status LoadKnownShapedSubgraph(ComputeGraph &graph, NodeItem *parent_node_item); | |||
| Status RecoverGraphUnknownFlag(); | |||
| Status CheckAicpuOpList(); | |||
| Status CreateProfilingNodeBefore(GraphItem &graph_item, const NodePtr &node); | |||
| Status CreateProfilingNodeAfter(GraphItem &graph_item, const NodePtr &node); | |||
| Status GenerateFpProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list); | |||
| Status GenerateBpProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list); | |||
| Status GenerateEndProfilingTask(const OpDescPtr &op_desc, vector<domi::TaskDef> &task_def_list); | |||
| Status GenerateArProfilingTask(const OpDescPtr &op_desc, int64_t log_id, vector<domi::TaskDef> &task_def_list); | |||
| const char* GetGraphName() const { | |||
| return hybrid_model_.model_name_.c_str(); | |||
| @@ -18,6 +18,7 @@ | |||
| #include "common/debug/log.h" | |||
| #include "common/ge/ge_util.h" | |||
| #include "graph/utils/tensor_utils.h" | |||
| #include "hybrid/model/hybrid_model.h" | |||
| #include "runtime/rt.h" | |||
| namespace ge { | |||
| @@ -79,12 +80,44 @@ Status IdentityNNodeTask::ExecuteAsync(TaskContext &context, std::function<void( | |||
| return SUCCESS; | |||
| } | |||
| Status ProfilingTraceNodeTask::UpdateArgs(TaskContext &context) { | |||
| return SUCCESS; | |||
| } | |||
| Status ProfilingTraceNodeTask::ExecuteAsync(TaskContext &context, std::function<void()> done_callback) { | |||
| for (const auto &task_def : task_defs_) { | |||
| auto log_time_stamp_def = task_def.log_timestamp(); | |||
| uint64_t log_id = log_time_stamp_def.logid(); | |||
| bool notify = log_time_stamp_def.notify(); | |||
| uint32_t flat = log_time_stamp_def.flat(); | |||
| GELOGD("ProfilingTraceTask execute async start. logid = %lu, notify = %d.", log_id, notify); | |||
| rtError_t rt_ret = rtProfilerTrace(log_id, notify, flat, context.GetStream()); | |||
| if (rt_ret != RT_ERROR_NONE) { | |||
| GELOGE(RT_FAILED, "Call rt api failed, ret: 0x%X", rt_ret); | |||
| return RT_ERROR_TO_GE_STATUS(rt_ret); | |||
| } | |||
| GELOGD("[%s] ProfilingTraceTask[%lu] execute success.", context.GetNodeName(), log_id); | |||
| } | |||
| return SUCCESS; | |||
| }; | |||
| Status RtsNodeExecutor::LoadTask(const HybridModel &model, const NodePtr &node, shared_ptr<NodeTask> &task) const { | |||
| GE_CHECK_NOTNULL(node); | |||
| auto op_type = node->GetType(); | |||
| if (op_type == IDENTITY) { | |||
| task = MakeShared<IdentityNodeTask>(); | |||
| } else if (op_type == IDENTITYN) { | |||
| task = MakeShared<IdentityNNodeTask>(); | |||
| } else if (op_type == PROFILINGTRAININGTRACE) { | |||
| auto *task_defs = model.GetTaskDefs(node); | |||
| if (task_defs == nullptr || task_defs->empty()) { | |||
| GELOGE(INTERNAL_ERROR, "Profiling node has no task to execute."); | |||
| return INTERNAL_ERROR; | |||
| } | |||
| task = MakeShared<ProfilingTraceNodeTask>(*task_defs); | |||
| } else { | |||
| GELOGE(INTERNAL_ERROR, "[%s] Unsupported RTS op type: %s", node->GetName().c_str(), op_type.c_str()); | |||
| return INTERNAL_ERROR; | |||
| @@ -18,6 +18,7 @@ | |||
| #define GE_HYBRID_NODE_EXECUTOR_RTS_RTS_NODE_EXECUTOR_H_ | |||
| #include "hybrid/node_executor/node_executor.h" | |||
| #include "proto/task.pb.h" | |||
| namespace ge { | |||
| namespace hybrid { | |||
| @@ -35,6 +36,18 @@ class IdentityNNodeTask : public IdentityNodeTask { | |||
| Status ExecuteAsync(TaskContext &context, std::function<void()> done_callback) override; | |||
| }; | |||
| class ProfilingTraceNodeTask : public NodeTask { | |||
| public: | |||
| explicit ProfilingTraceNodeTask(const std::vector<domi::TaskDef> &task_defs) : task_defs_(task_defs) {} | |||
| ~ProfilingTraceNodeTask() override = default; | |||
| Status UpdateArgs(TaskContext &context) override; | |||
| Status ExecuteAsync(TaskContext &context, std::function<void()> done_callback) override; | |||
| private: | |||
| std::vector<domi::TaskDef> task_defs_; | |||
| }; | |||
| class RtsNodeExecutor : public NodeExecutor { | |||
| public: | |||
| Status LoadTask(const HybridModel &model, const NodePtr &node, shared_ptr<NodeTask> &task) const override; | |||
| @@ -123,7 +123,7 @@ class TaskContext { | |||
| Status status_ = SUCCESS; | |||
| std::vector<void *> workspaces_; | |||
| uint64_t iteration_ = 0; | |||
| uint32_t task_id_= 0; | |||
| uint32_t task_id_ = 0; | |||
| uint32_t stream_id_ = 0; | |||
| }; | |||
| } // namespace hybrid | |||
| @@ -36,6 +36,9 @@ | |||
| #include "model/ge_model.h" | |||
| #include "graph/shape_refiner.h" | |||
| #include "graph/opsproto_manager.h" | |||
| #include "inc/pass_manager.h" | |||
| #include "graph/passes/net_output_pass.h" | |||
| #include "graph/passes/data_pass.h" | |||
| using std::string; | |||
| using namespace std; | |||
| @@ -233,6 +236,7 @@ class Impl { | |||
| ModelBufferData &ge_models); | |||
| graphStatus InitDomiOmgContext(const string &input_shape, const string &input_format, const string &net_format, | |||
| bool is_dynamic_input); | |||
| static graphStatus InferShapePrepare(const ComputeGraphPtr &compute_graph); | |||
| void SetRtSocVersion(); | |||
| void UpdateThreadContext(); | |||
| void LoadOpsProto(); | |||
| @@ -243,6 +247,22 @@ class Impl { | |||
| OmgContext omg_context_; | |||
| }; | |||
| graphStatus Impl::InferShapePrepare(const ComputeGraphPtr &compute_graph) { | |||
| GE_CHECK_NOTNULL(compute_graph); | |||
| PassManager prepare_infershape; | |||
| prepare_infershape.AddPass("PrepareNetoutput", new(std::nothrow) NetOutputPass); | |||
| prepare_infershape.AddPass("PrepareSubGraphReflection", new (std::nothrow) DataPass); | |||
| auto ret = prepare_infershape.Run(compute_graph); | |||
| if ((ret != SUCCESS) && (ret != NOT_CHANGED)) { | |||
| GELOGE(ret, "Prepair for infershape failed, ret:%d", ret); | |||
| return ret; | |||
| } | |||
| GELOGD("Prepair for infershape success!"); | |||
| return GRAPH_SUCCESS; | |||
| } | |||
| graphStatus Impl::UpdateDataOpAttr(const Graph &graph) { | |||
| GELOGD("Enter Update Data Attr Process!"); | |||
| if (options_.find(kInputShape) == options_.end()) { | |||
| @@ -591,7 +611,12 @@ graphStatus aclgrphInferShapeAndType(ge::Graph &graph) { | |||
| return GRAPH_PARAM_INVALID; | |||
| } | |||
| auto ret = compute_graph->TopologicalSorting(); | |||
| auto ret = Impl::InferShapePrepare(compute_graph); | |||
| if (ret != GRAPH_SUCCESS) { | |||
| return ret; | |||
| } | |||
| ret = compute_graph->TopologicalSorting(); | |||
| if (ret != GRAPH_SUCCESS) { | |||
| GELOGE(ret, "Acl topo logical sort failed."); | |||
| return ret; | |||
| @@ -42,21 +42,29 @@ bool IsOriginalOpFind(OpDescPtr &op_desc, const std::string &op_name) { | |||
| } | |||
| void KeepDtypeReportError(const std::vector<std::string> &invalid_list) { | |||
| std::stringstream error_ops; | |||
| for (size_t i = 0; i < invalid_list.size(); i++) { | |||
| std::stringstream err_msg; | |||
| size_t list_size = invalid_list.size(); | |||
| err_msg << "config file contains " << list_size; | |||
| if (list_size == 1) { | |||
| err_msg << " operator not in the graph, op name:"; | |||
| } else { | |||
| err_msg << " operators not in the graph, op names:"; | |||
| } | |||
| for (size_t i = 0; i < list_size; i++) { | |||
| if (i == kMaxOpsNum) { | |||
| error_ops << "..."; | |||
| err_msg << ".."; | |||
| break; | |||
| } | |||
| error_ops << invalid_list[i] << " "; | |||
| err_msg << invalid_list[i]; | |||
| if (i != list_size - 1) { | |||
| err_msg << " "; | |||
| } | |||
| } | |||
| std::string err_msg = "config file contains "; | |||
| err_msg = err_msg.append(std::to_string(invalid_list.size())) | |||
| .append(" operators not in the graph, op names:") | |||
| .append(error_ops.str()); | |||
| ErrorManager::GetInstance().ATCReportErrMessage( | |||
| "E10042", {"parameter", "reason"}, {"keep_dtype", err_msg.c_str()}); | |||
| GELOGE(FAILED, "%s", err_msg.c_str()); | |||
| "E10042", {"parameter", "reason"}, {"keep_dtype", err_msg.str().c_str()}); | |||
| GELOGE(FAILED, "%s", err_msg.str().c_str()); | |||
| } | |||
| Status DealKeepDtypeOption(const ComputeGraphPtr &graph, const std::string &keep_dtype) { | |||
| @@ -96,6 +104,7 @@ Status DealKeepDtypeOption(const ComputeGraphPtr &graph, const std::string &keep | |||
| invalid_list.push_back(op_name); | |||
| } | |||
| } | |||
| ifs.close(); | |||
| if (!invalid_list.empty()) { | |||
| KeepDtypeReportError(invalid_list); | |||
| @@ -994,6 +994,8 @@ domi::Status GenerateModel(std::map<string, string> &options, std::string output | |||
| Status ret = ge::DealKeepDtypeOption(ge::GraphUtils::GetComputeGraph(graph), FLAGS_keep_dtype); | |||
| if (ret != SUCCESS) { | |||
| (void)ge_generator.Finalize(); | |||
| (void)ge::GELib::GetInstance()->Finalize(); | |||
| return ret; | |||
| } | |||
| @@ -61,6 +61,11 @@ const char *const OPTION_EXEC_HCCL_FLAG = "ge.exec.hcclFlag"; | |||
| const char *const OPTION_EXEC_ATOMIC_FLAG = "ge.exec.enable_atomic"; | |||
| const char *const OPTION_EXEC_DISABLE_REUSED_MEMORY = "ge.exec.disableReuseMemory"; | |||
| const char *const OPTION_EXEC_ENABLE_TAILING_OPTIMIZATION = "ge.exec.isTailingOptimization"; | |||
| // Dynamic input flag. ge.exec.dynamicInput=1, means enable dynaimc input, | |||
| // ge.exec.dynamicGraphExecuteMode, dynamic_execute[default] | |||
| const char *const OPTION_EXEC_DYNAMIC_INPUT = "ge.exec.dynamicInput"; | |||
| const char *const OPTION_EXEC_DYNAMIC_EXECUTE_MODE = "ge.exec.dynamicGraphExecuteMode"; | |||
| const char *const OPTION_EXEC_DATA_INPUTS_SHAPE_RANGE = "ge.exec.dataInputsShapeRange"; | |||
| // Option key: memory init | |||
| const char *const GRAPH_MEMORY_MAX_SIZE = "ge.graphMemoryMaxSize"; | |||
| @@ -73,14 +73,15 @@ struct DataBuffer { | |||
| /// @brief External input data | |||
| /// | |||
| struct InputData { | |||
| uint32_t index; // Index of input data | |||
| uint32_t timestamp; // Data creation time | |||
| uint32_t timeout; // Processing timeout | |||
| uint32_t model_id; // Model ID required for data processing | |||
| uint64_t request_id = 0; // Request ID | |||
| std::vector<DataBuffer> blobs; // Actual input data, currently only supports one input | |||
| bool is_dynamic_batch = false; // Whether is dynamic batch size scene, default:false | |||
| std::string batch_label; // Gear used for current inference in dynamic batch scene | |||
| uint32_t index; // Index of input data | |||
| uint32_t timestamp; // Data creation time | |||
| uint32_t timeout; // Processing timeout | |||
| uint32_t model_id; // Model ID required for data processing | |||
| uint64_t request_id = 0; // Request ID | |||
| std::vector<DataBuffer> blobs; // Actual input data, currently only supports one input | |||
| bool is_dynamic_batch = false; // Whether is dynamic batch size scene, default:false | |||
| std::string batch_label; // Gear used for current inference in dynamic batch scene | |||
| std::vector<std::vector<int64_t>> shapes; // Input shapes | |||
| }; | |||
| /// Output result structure definition | |||
| @@ -263,6 +264,8 @@ struct ComputeGraphDescInfo { | |||
| std::vector<Format> output_format; | |||
| std::vector<std::vector<int64_t>> output_shape; | |||
| std::vector<DataType> output_data_type; | |||
| uint32_t task_id; | |||
| uint32_t stream_id; | |||
| }; | |||
| struct OpDescInfo { | |||
| @@ -529,6 +529,9 @@ REGISTER_OPTYPE_DECLARE(HVDWAIT, "HorovodWait"); | |||
| // aicpu op for online_infer dynamic_dims | |||
| REGISTER_OPTYPE_DECLARE(GETDYNAMICDIMS, "GetDynamicDims"); | |||
| // profiling training trace node | |||
| REGISTER_OPTYPE_DECLARE(PROFILINGTRAININGTRACE, "ProfilingTrainingTrace"); | |||
| enum InputMode { INPUT = 0, CONST_INPUT }; | |||
| // Definition of the processing status enum of the process module | |||
| @@ -157,9 +157,6 @@ class GE_FUNC_DEV_VISIBILITY GE_FUNC_HOST_VISIBILITY GeExecutor { | |||
| ge::Status GetAippType(uint32_t model_id, uint32_t index, InputAippType &type, size_t &aipp_index); | |||
| ge::Status GetModelDescInfoForZeroCopy(uint32_t model_id, std::vector<ge::TensorDesc> &input_desc, | |||
| std::vector<ge::TensorDesc> &output_desc); | |||
| ge::Status CommandHandle(const ge::Command &command); | |||
| ge::Status SetDump(const DumpConfig &dump_config); | |||
| @@ -26,6 +26,7 @@ | |||
| #include <vector> | |||
| #include "framework/common/fmk_error_codes.h" | |||
| #include "register/register_fmk_types.h" | |||
| #include "graph/node.h" | |||
| using domi::DOMI_TENSOR_ND; | |||
| using domi::DOMI_TENSOR_RESERVED; | |||
| @@ -120,6 +121,8 @@ struct OmgContext { | |||
| std::vector<std::vector<int64_t>> user_real_input_dims; | |||
| std::vector<int64_t> cur_dynamic_dims; | |||
| bool need_multi_batch = false; | |||
| std::vector<NodePtr> data_nodes; | |||
| std::vector<NodePtr> getnext_nosink_nodes; | |||
| }; | |||
| } // namespace ge | |||
| @@ -1 +1 @@ | |||
| Subproject commit 11c6cf2921b6a385616a3ebc601b4431b55b07db | |||
| Subproject commit fe37bc343ea52c76d35e9e9ec83cea0151bfa900 | |||
| @@ -1 +1 @@ | |||
| Subproject commit 99437c39d26624a14060307366a96b79b1d439c3 | |||
| Subproject commit 336cd3107253d3fe41cfb9fec2db62b5f3d8a33b | |||
| @@ -121,6 +121,7 @@ set(COMMON_SRC_FILES | |||
| "${GE_CODE_DIR}/metadef/graph/opsproto/opsproto_manager.cc" | |||
| "${GE_CODE_DIR}/metadef/ops/op_imp.cpp" | |||
| "${GE_CODE_DIR}/metadef/register/register.cpp" | |||
| "${GE_CODE_DIR}/metadef/register/register_pass.cpp" | |||
| "${GE_CODE_DIR}/metadef/register/op_kernel_registry.cpp" | |||
| "${GE_CODE_DIR}/metadef/register/auto_mapping_util.cpp" | |||
| "${GE_CODE_DIR}/metadef/register/tensor_assign.cpp" | |||
| @@ -626,6 +627,7 @@ set(PASS_TEST_FILES | |||
| "graph/passes/net_output_pass_unittest.cc" | |||
| "graph/passes/no_use_reshape_remove_pass_unittest.cc" | |||
| "graph/passes/infershape_pass_unittest.cc" | |||
| "graph/passes/multi_batch_clone_pass_unittest.cc" | |||
| ) | |||
| set(KERNEL_TEST_FILES | |||
| @@ -32,6 +32,18 @@ class UtestDavinciModel : public testing::Test { | |||
| void SetUp() {} | |||
| void TearDown() {} | |||
| public: | |||
| NodePtr MakeNode(const ComputeGraphPtr &graph, uint32_t in_num, uint32_t out_num, string name, string type) { | |||
| GeTensorDesc test_desc(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| auto op_desc = std::make_shared<OpDesc>(name, type); | |||
| for (auto i = 0; i < in_num; ++i) { | |||
| op_desc->AddInputDesc(test_desc); | |||
| } | |||
| for (auto i = 0; i < out_num; ++i) { | |||
| op_desc->AddOutputDesc(test_desc); | |||
| } | |||
| return graph->AddNode(op_desc); | |||
| } | |||
| }; | |||
| TEST_F(UtestDavinciModel, init_success) { | |||
| @@ -127,13 +139,14 @@ TEST_F(UtestDavinciModel, init_data_op) { | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| OpDescPtr op_input = CreateOpDesc("data", DATA); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_input = CreateOpDesc("data", DATA); | |||
| op_input->AddInputDesc(tensor); | |||
| op_input->AddOutputDesc(tensor); | |||
| op_input->SetInputOffset({1024}); | |||
| op_input->SetOutputOffset({5120}); | |||
| op_input->SetOutputOffset({1024}); | |||
| NodePtr node_input = graph->AddNode(op_input); | |||
| OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT); | |||
| @@ -156,12 +169,14 @@ TEST_F(UtestDavinciModel, init_data_op_subgraph) { | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| OpDescPtr op_input = CreateOpDesc("data", DATA); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_input = CreateOpDesc("data", DATA); | |||
| op_input->AddInputDesc(tensor); | |||
| op_input->AddOutputDesc(tensor); | |||
| op_input->SetInputOffset({1024}); | |||
| op_input->SetOutputOffset({5120}); | |||
| op_input->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_input); | |||
| uint32_t data_op_index = 0; | |||
| @@ -180,8 +195,10 @@ TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) { | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT); | |||
| op_output->AddInputDesc(tensor); | |||
| op_output->SetInputOffset({1024}); | |||
| op_output->SetSrcName( { "data" } ); | |||
| @@ -324,5 +341,422 @@ TEST_F(UtestDavinciModel, SyncVarData_test) { | |||
| EXPECT_NE(model.SyncVarData(), SUCCESS); | |||
| } | |||
| TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT); | |||
| op_output->AddInputDesc(tensor); | |||
| op_output->SetInputOffset({1024}); | |||
| NodePtr node_output = graph->AddNode(op_output); | |||
| EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS); | |||
| } | |||
| TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) { | |||
| DavinciModel model(0, nullptr); | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| OpDescPtr data1 = CreateOpDesc("data1", DATA); | |||
| GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->AddInputDesc(shape_desc); | |||
| data1->AddOutputDesc(shape_desc); | |||
| NodePtr data1_node = graph->AddNode(data1); | |||
| OpDescPtr case_node = CreateOpDesc("case1", CASE); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| case_node->AddInputDesc(tensor); | |||
| case_node->AddOutputDesc(tensor); | |||
| NodePtr case1_node = graph->AddNode(case_node); | |||
| OpDescPtr output = CreateOpDesc("output1", NETOUTPUT); | |||
| output->AddInputDesc(tensor); | |||
| output->SetSrcName( { "case1" } ); | |||
| output->SetSrcIndex( { 0 } ); | |||
| NodePtr output_node = graph->AddNode(output); | |||
| GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0)); | |||
| GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8"); | |||
| (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true); | |||
| model.is_getnext_sink_dynamic_ = false; | |||
| model.is_online_infer_dynamic_ = true; | |||
| auto ret = model.InitRealSizeAndShapeInfo(graph, output_node); | |||
| // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS | |||
| EXPECT_EQ(ret, SUCCESS); | |||
| vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"}; | |||
| (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims); | |||
| ret = model.InitRealSizeAndShapeInfo(graph, output_node); | |||
| EXPECT_EQ(ret, SUCCESS); | |||
| } | |||
| TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) { | |||
| DavinciModel model(0, nullptr); | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| OpDescPtr data1 = CreateOpDesc("data1", DATA); | |||
| GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->AddInputDesc(shape_desc); | |||
| data1->AddOutputDesc(shape_desc); | |||
| NodePtr data1_node = graph->AddNode(data1); | |||
| OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS); | |||
| GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT); | |||
| shape_node->AddInputDesc(in_tensor); | |||
| shape_node->AddOutputDesc(out_tensor); | |||
| NodePtr get_dynamic_dims_node = graph->AddNode(shape_node); | |||
| OpDescPtr output = CreateOpDesc("output1", NETOUTPUT); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| output->AddInputDesc(tensor); | |||
| output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } ); | |||
| output->SetSrcIndex( { 0, 1 } ); | |||
| NodePtr output_node = graph->AddNode(output); | |||
| GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1)); | |||
| (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3"); | |||
| model.is_getnext_sink_dynamic_ = true; | |||
| model.is_online_infer_dynamic_ = false; | |||
| auto ret = model.InitRealSizeAndShapeInfo(graph, output_node); | |||
| EXPECT_EQ(ret, SUCCESS); | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 4; | |||
| ret = model.InitRealSizeAndShapeInfo(graph, output_node); | |||
| EXPECT_EQ(ret, SUCCESS); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_info) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); | |||
| GeAttrValue::NAMED_ATTRS aipp_attr; | |||
| aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic)); | |||
| aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0)); | |||
| aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048)); | |||
| aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1)); | |||
| EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr)); | |||
| AippConfigInfo aipp_info; | |||
| EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS); | |||
| EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_static) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp"); | |||
| InputAippType aipp_type; | |||
| size_t aipp_index = 0; | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP); | |||
| EXPECT_EQ(aipp_index, 0xFFFFFFFFu); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_dynamic) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp"); | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp"); | |||
| InputAippType aipp_type; | |||
| size_t aipp_index = 0; | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_releated) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| { | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp"); | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp"); | |||
| } | |||
| { | |||
| OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 1 | |||
| } | |||
| InputAippType aipp_type; | |||
| size_t aipp_index = 0; | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP); | |||
| EXPECT_EQ(aipp_index, 1); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 2); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 2); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf"); | |||
| InputAippType aipp_type; | |||
| size_t aipp_index = 0; | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE); | |||
| EXPECT_EQ(aipp_index, 0xFFFFFFFFU); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid"); | |||
| InputAippType aipp_type; | |||
| size_t aipp_index = 0; | |||
| EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS); | |||
| EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| vector<string> inputs = {}; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs); | |||
| vector<string> outputs = {}; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs); | |||
| OriginInputInfo orig_input_info; | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" }; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs); | |||
| vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" }; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs); | |||
| OriginInputInfo orig_input_info; | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs); | |||
| vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" }; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs); | |||
| OriginInputInfo orig_input_info; | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID); | |||
| EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) { | |||
| DavinciModel model(0, nullptr); | |||
| model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore() | |||
| model.runtime_param_.mem_base = (uint8_t *)0x08000000; | |||
| model.runtime_param_.mem_size = 5120000; | |||
| ComputeGraphPtr graph = make_shared<ComputeGraph>("default"); | |||
| GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| TensorUtils::SetSize(tensor, 512); | |||
| OpDescPtr op_desc = CreateOpDesc("data", DATA); | |||
| op_desc->AddInputDesc(tensor); | |||
| op_desc->AddOutputDesc(tensor); | |||
| op_desc->SetInputOffset({1024}); | |||
| op_desc->SetOutputOffset({1024}); | |||
| NodePtr node = graph->AddNode(op_desc); // op_index 0 | |||
| vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" }; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs); | |||
| vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" }; | |||
| AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs); | |||
| vector<InputOutputDims> input_dims; | |||
| vector<InputOutputDims> output_dims; | |||
| EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST); | |||
| EXPECT_EQ(model.InitNodes(graph), SUCCESS); | |||
| EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS); | |||
| EXPECT_EQ(input_dims.size(), 1); | |||
| EXPECT_EQ(output_dims.size(), 1); | |||
| EXPECT_EQ(model.input_addrs_list_.size(), 1); | |||
| EXPECT_EQ(model.output_addrs_list_.size(), 0); | |||
| EXPECT_EQ(model.op_list_.size(), 1); | |||
| } | |||
| } // namespace ge | |||
| @@ -1120,7 +1120,6 @@ TEST_F(UtestKernelTaskInfo, kernel_task_info_init_success) { | |||
| op_desc->AddOutputDesc(descout); | |||
| op_desc->SetId(0); | |||
| model.data_op_list_.push_back(op_desc); | |||
| model.op_list_[0] = op_desc; | |||
| domi::TaskDef task_def; | |||
| @@ -0,0 +1,247 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "graph/passes/multi_batch_clone_pass.h" | |||
| #include <gtest/gtest.h> | |||
| #include <set> | |||
| #include <string> | |||
| #include "inc/pass_manager.h" | |||
| #include "graph/utils/tensor_utils.h" | |||
| #include "graph/common/local_context.h" | |||
| #include "graph/passes/multi_batch_pass.h" | |||
| #include "graph/preprocess/multi_batch_copy_graph.h" | |||
| #include "graph/preprocess/insert_op/util_insert_aipp_op.h" | |||
| #include "framework/omg/omg_inner_types.h" | |||
| #include "register/op_registry.h" | |||
| namespace ge{ | |||
| class UtestMultiBatchClonePass : public testing::Test { | |||
| protected: | |||
| void SetUp() { | |||
| SetLocalOmgContext(domi::GetContext()); | |||
| GetLocalOmgContext().dynamic_image_size.clear(); | |||
| GetLocalOmgContext().dynamic_batch_size.clear(); | |||
| } | |||
| void TearDown() { | |||
| GetLocalOmgContext().dynamic_image_size.clear(); | |||
| GetLocalOmgContext().dynamic_batch_size.clear(); | |||
| GetLocalOmgContext().dynamic_node_type.clear(); | |||
| } | |||
| public: | |||
| NodePtr MakeNode(const ComputeGraphPtr &graph, uint32_t in_num, uint32_t out_num, string name, string type) { | |||
| GeTensorDesc test_desc(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| auto op_desc = std::make_shared<OpDesc>(name, type); | |||
| for (auto i = 0; i < in_num; ++i) { | |||
| op_desc->AddInputDesc(test_desc); | |||
| } | |||
| for (auto i = 0; i < out_num; ++i) { | |||
| op_desc->AddOutputDesc(test_desc); | |||
| } | |||
| return graph->AddNode(op_desc); | |||
| } | |||
| NodePtr MakeConstNode(const ComputeGraphPtr &graph) { | |||
| static uint32_t index = 0; | |||
| GeTensorDesc test_desc(GeShape(), FORMAT_NCHW, DT_FLOAT); | |||
| auto op_desc = std::make_shared<OpDesc>("dynamic_const_" + std::to_string(index++), "Const"); | |||
| op_desc->AddOutputDesc(test_desc); | |||
| return graph->AddNode(op_desc); | |||
| } | |||
| void make_original_graph(const ComputeGraphPtr &graph) { | |||
| auto conv2d_node = MakeNode(graph, 3, 1, "conv1", "Conv2D"); | |||
| { | |||
| auto data1 = MakeNode(graph, 1, 1, "data", "Data"); | |||
| GeTensorDesc tensor_desc(GeShape({-1,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->GetOpDesc()->UpdateInputDesc(0, tensor_desc); | |||
| data1->GetOpDesc()->UpdateOutputDesc(0, tensor_desc); | |||
| AttrUtils::SetInt(data1->GetOpDesc(), ATTR_NAME_INDEX, 0); | |||
| GetLocalOmgContext().user_input_dims = {std::make_pair(data1->GetOpDesc()->GetName(), vector<int64_t>{-1,3,224,224})}; | |||
| GraphUtils::AddEdge(data1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(2)); | |||
| } | |||
| auto bn_conv1 = MakeNode(graph, 4, 1, "bn_conv1", "BNInference"); | |||
| { | |||
| GraphUtils::AddEdge(conv2d_node->GetOutDataAnchor(0), bn_conv1->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), bn_conv1->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), bn_conv1->GetInDataAnchor(2)); | |||
| auto const3= MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const3->GetOutDataAnchor(0), bn_conv1->GetInDataAnchor(3)); | |||
| } | |||
| auto scale_conv1 = MakeNode(graph, 4, 1, "scale1", "Scale"); | |||
| { | |||
| GraphUtils::AddEdge(bn_conv1->GetOutDataAnchor(0), scale_conv1->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), scale_conv1->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), scale_conv1->GetInDataAnchor(2)); | |||
| } | |||
| auto output_node = MakeNode(graph, 1, 0, "output1", "NetOutput"); | |||
| GraphUtils::AddEdge(scale_conv1->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| } | |||
| void GraphWithJustData(const ComputeGraphPtr &graph) { | |||
| auto conv2d_node = MakeNode(graph, 3, 1, "conv1", "Conv2D"); | |||
| { | |||
| auto data1 = MakeNode(graph, 1, 1, "data", "Data"); | |||
| GeTensorDesc tensor_desc(GeShape({-1,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->GetOpDesc()->UpdateInputDesc(0, tensor_desc); | |||
| data1->GetOpDesc()->UpdateOutputDesc(0, tensor_desc); | |||
| AttrUtils::SetInt(data1->GetOpDesc(), ATTR_NAME_INDEX, 0); | |||
| GetLocalOmgContext().user_input_dims = {std::make_pair(data1->GetOpDesc()->GetName(), vector<int64_t>{-1,3,224,224})}; | |||
| GraphUtils::AddEdge(data1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(2)); | |||
| } | |||
| auto output_node = MakeNode(graph, 1, 0, "output1", "NetOutput"); | |||
| GraphUtils::AddEdge(conv2d_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| } | |||
| void GraphWithGetNextNosink(const ComputeGraphPtr &graph) { | |||
| auto conv2d_node = MakeNode(graph, 3, 1, "conv1", "Conv2D"); | |||
| { | |||
| auto data1 = MakeNode(graph, 1, 1, "IteratorGetNext_data", "Data"); | |||
| GeTensorDesc tensor_desc(GeShape({-1,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->GetOpDesc()->UpdateInputDesc(0, tensor_desc); | |||
| data1->GetOpDesc()->UpdateOutputDesc(0, tensor_desc); | |||
| AttrUtils::SetInt(data1->GetOpDesc(), ATTR_NAME_INDEX, 0); | |||
| GetLocalOmgContext().user_input_dims = {std::make_pair(data1->GetOpDesc()->GetName(), vector<int64_t>{-1,3,224,224})}; | |||
| GraphUtils::AddEdge(data1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(2)); | |||
| } | |||
| auto output_node = MakeNode(graph, 1, 0, "output1", "NetOutput"); | |||
| GraphUtils::AddEdge(conv2d_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| } | |||
| // getnext has one data and has one out of shape | |||
| void GraphWithGetNextSink(const ComputeGraphPtr &graph) { | |||
| auto conv2d_node = MakeNode(graph, 3, 1, "conv1", "Conv2D"); | |||
| { | |||
| auto data1 = MakeNode(graph, 1, 2, "data", "IteratorV2"); | |||
| GeTensorDesc tensor_desc(GeShape({-1,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT); | |||
| data1->GetOpDesc()->UpdateOutputDesc(0, tensor_desc); | |||
| data1->GetOpDesc()->UpdateOutputDesc(1, shape_desc); | |||
| AttrUtils::SetInt(data1->GetOpDesc(), ATTR_NAME_INDEX, 0); | |||
| GetLocalOmgContext().user_input_dims = {std::make_pair(data1->GetOpDesc()->GetName(), vector<int64_t>{-1,3,224,224})}; | |||
| GraphUtils::AddEdge(data1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(0)); | |||
| auto identity = MakeNode(graph, 1, 0, "identity", "Identity"); | |||
| GraphUtils::AddEdge(data1->GetOutDataAnchor(1), identity->GetInDataAnchor(0)); | |||
| auto const1 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const1->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(1)); | |||
| auto const2 = MakeConstNode(graph); | |||
| GraphUtils::AddEdge(const2->GetOutDataAnchor(0), conv2d_node->GetInDataAnchor(2)); | |||
| } | |||
| auto output_node = MakeNode(graph, 1, 0, "output1", "NetOutput"); | |||
| GraphUtils::AddEdge(conv2d_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0)); | |||
| } | |||
| }; | |||
| // graph is nullptr | |||
| TEST_F(UtestMultiBatchClonePass, graph_nullptr) { | |||
| PassManager pass_manager; | |||
| pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass); | |||
| ComputeGraphPtr graph; | |||
| EXPECT_EQ(pass_manager.Run(graph), PARAM_INVALID); | |||
| } | |||
| // graph with subgraph | |||
| TEST_F(UtestMultiBatchClonePass, graph_with_subgraph) { | |||
| PassManager pass_manager; | |||
| pass_manager.AddPass("MultiBatchClonePass", new (std::nothrow) MultiBatchClonePass); | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| make_original_graph(graph); | |||
| EXPECT_EQ(pass_manager.Run(graph), SUCCESS); | |||
| ComputeGraphPtr owner = std::make_shared<ComputeGraph>("test_owner"); | |||
| auto func_node = MakeNode(owner, 3, 1, "test_if", "If"); | |||
| graph->SetParentNode(func_node); | |||
| graph->SetParentGraph(owner); | |||
| EXPECT_EQ(pass_manager.Run(graph), SUCCESS); | |||
| } | |||
| //graph is uncompute graph, not need to do multi batch | |||
| TEST_F(UtestMultiBatchClonePass, uncompute_graph) { | |||
| MultiBatchClonePass multi_batch_clone; | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| make_original_graph(graph); | |||
| GetLocalOmgContext().need_multi_batch = false; | |||
| EXPECT_EQ(multi_batch_clone.Run(graph), SUCCESS); | |||
| } | |||
| //compute_graph with data from DATA | |||
| TEST_F(UtestMultiBatchClonePass, compute_graph_with_data) { | |||
| MultiBatchClonePass multi_batch_clone; | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| GraphWithJustData(graph); | |||
| GetLocalOmgContext().need_multi_batch = true; | |||
| EXPECT_EQ(multi_batch_clone.Run(graph), SUCCESS); | |||
| GetLocalOmgContext().dynamic_node_type = DATA; | |||
| GetLocalOmgContext().dynamic_dims = "1;2;4;8"; | |||
| EXPECT_EQ(multi_batch_clone.Run(graph), SUCCESS); | |||
| EXPECT_EQ(GetLocalOmgContext().data_nodes.size(), 1); | |||
| } | |||
| //compute_graph with data from GetNext_nosink | |||
| TEST_F(UtestMultiBatchClonePass, compute_graph_with_getnext_nosink) { | |||
| MultiBatchClonePass multi_batch_clone; | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| GraphWithGetNextNosink(graph); | |||
| GetLocalOmgContext().need_multi_batch = true; | |||
| GetLocalOmgContext().dynamic_node_type = GETNEXT; | |||
| GetLocalOmgContext().dynamic_dims = "1;2;4;8"; | |||
| EXPECT_EQ(multi_batch_clone.Run(graph), SUCCESS); | |||
| EXPECT_EQ(GetLocalOmgContext().getnext_nosink_nodes.size(), 1); | |||
| } | |||
| //compute_graph with data from GetNext_nosink | |||
| TEST_F(UtestMultiBatchClonePass, compute_graph_with_getnext_sink) { | |||
| MultiBatchClonePass multi_batch_clone; | |||
| ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph"); | |||
| GraphWithGetNextSink(graph); | |||
| GetLocalOmgContext().need_multi_batch = true; | |||
| GetLocalOmgContext().dynamic_node_type = GETNEXT; | |||
| GetLocalOmgContext().dynamic_dims = "1;2;4;8"; | |||
| EXPECT_EQ(multi_batch_clone.Run(graph), SUCCESS); | |||
| EXPECT_EQ(GetLocalOmgContext().getnext_nosink_nodes.size(), 0); | |||
| } | |||
| } | |||