|
- # coding: utf-8
- # ================================================================#
- # Copyright (C) 2020 Freecss All rights reserved.
- #
- # File Name :basic_model.py
- # Author :freecss
- # Email :karlfreecss@gmail.com
- # Created Date :2020/11/21
- # Description :
- #
- # ================================================================#
-
- import torch
- import numpy
- from torch.utils.data import DataLoader
- from ..utils.logger import print_log
- from ..dataset import ClassificationDataset
-
- import os
- from typing import List, Any, T, Optional, Callable, Tuple
-
-
- class BasicNN:
- """
- Wrap NN models into the form of an sklearn estimator.
-
- Parameters
- ----------
- model : torch.nn.Module
- The PyTorch model to be trained or used for prediction.
- criterion : torch.nn.Module
- The loss function used for training.
- optimizer : torch.optim.Optimizer
- The optimizer used for training.
- device : torch.device, optional
- The device on which the model will be trained or used for prediction, by default torch.device("cpu").
- batch_size : int, optional
- The batch size used for training, by default 32.
- num_epochs : int, optional
- The number of epochs used for training, by default 1.
- stop_loss : Optional[float], optional
- The loss value at which to stop training, by default 0.01.
- num_workers : int
- The number of workers used for loading data, by default 0.
- save_interval : Optional[int], optional
- The interval at which to save the model during training, by default None.
- save_dir : Optional[str], optional
- The directory in which to save the model during training, by default None.
- transform : Callable[..., Any], optional
- A function/transform that takes in an object and returns a transformed version, by default None.
- collate_fn : Callable[[List[T]], Any], optional
- The function used to collate data, by default None.
- """
-
- def __init__(
- self,
- model: torch.nn.Module,
- criterion: torch.nn.Module,
- optimizer: torch.optim.Optimizer,
- device: torch.device = torch.device("cpu"),
- batch_size: int = 32,
- num_epochs: int = 1,
- stop_loss: Optional[float] = 0.01,
- num_workers: int = 0,
- save_interval: Optional[int] = None,
- save_dir: Optional[str] = None,
- transform: Callable[..., Any] = None,
- collate_fn: Callable[[List[T]], Any] = None,
- ) -> None:
- self.model = model.to(device)
- self.criterion = criterion
- self.optimizer = optimizer
- self.device = device
- self.batch_size = batch_size
- self.num_epochs = num_epochs
- self.stop_loss = stop_loss
- self.num_workers = num_workers
- self.save_interval = save_interval
- self.save_dir = save_dir
- self.transform = transform
- self.collate_fn = collate_fn
-
- def _fit(self, data_loader) -> float:
- """
- Internal method to fit the model on data for n epochs, with early stopping.
-
- Parameters
- ----------
- data_loader : DataLoader
- Data loader providing training samples.
-
- Returns
- -------
- float
- The loss value of the trained model.
- """
- loss_value = 1e9
- for epoch in range(self.num_epochs):
- loss_value = self.train_epoch(data_loader)
- if self.save_interval is not None and (epoch + 1) % self.save_interval == 0:
- if self.save_dir is None:
- raise ValueError(
- "save_dir should not be None if save_interval is not None."
- )
- self.save(epoch + 1)
- if self.stop_loss is not None and loss_value < self.stop_loss:
- break
- return loss_value
-
- def fit(
- self, data_loader: DataLoader = None, X: List[Any] = None, y: List[int] = None
- ) -> float:
- """
- Train the model.
-
- Parameters
- ----------
- data_loader : DataLoader, optional
- The data loader used for training, by default None.
- X : List[Any], optional
- The input data, by default None.
- y : List[int], optional
- The target data, by default None.
-
- Returns
- -------
- float
- The loss value of the trained model.
- """
- if data_loader is None:
- if X is None:
- raise ValueError("data_loader and X can not be None simultaneously.")
- else:
- data_loader = self._data_loader(X, y)
- return self._fit(data_loader)
-
- def train_epoch(self, data_loader: DataLoader) -> float:
- """
- Train the model for one epoch.
-
- Parameters
- ----------
- data_loader : DataLoader
- The data loader used for training.
-
- Returns
- -------
- float
- The loss value of the trained model.
- """
- model = self.model
- criterion = self.criterion
- optimizer = self.optimizer
- device = self.device
-
- model.train()
-
- total_loss, total_num = 0.0, 0
- for data, target in data_loader:
- data, target = data.to(device), target.to(device)
- out = model(data)
- loss = criterion(out, target)
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- total_loss += loss.item() * data.size(0)
- total_num += data.size(0)
-
- return total_loss / total_num
-
- def _predict(self, data_loader) -> torch.Tensor:
- """
- Internal method to predict the outputs given a DataLoader.
-
- Parameters
- ----------
- data_loader : DataLoader
- The DataLoader providing input samples.
-
- Returns
- -------
- torch.Tensor
- Raw output from the model.
- """
- model = self.model
- device = self.device
-
- model.eval()
-
- with torch.no_grad():
- results = []
- for data, _ in data_loader:
- data = data.to(device)
- out = model(data)
- results.append(out)
-
- return torch.cat(results, axis=0)
-
- def predict(
- self, data_loader: DataLoader = None, X: List[Any] = None
- ) -> numpy.ndarray:
- """
- Predict the class of the input data.
-
- Parameters
- ----------
- data_loader : DataLoader, optional
- The data loader used for prediction, by default None.
- X : List[Any], optional
- The input data, by default None.
-
- Returns
- -------
- numpy.ndarray
- The predicted class of the input data.
- """
-
- if data_loader is None:
- data_loader = self._data_loader(X)
- return self._predict(data_loader).argmax(axis=1).cpu().numpy()
-
- def predict_proba(
- self, data_loader: DataLoader = None, X: List[Any] = None
- ) -> numpy.ndarray:
- """
- Predict the probability of each class for the input data.
-
- Parameters
- ----------
- data_loader : DataLoader, optional
- The data loader used for prediction, by default None.
- X : List[Any], optional
- The input data, by default None.
-
- Returns
- -------
- numpy.ndarray
- The predicted probability of each class for the input data.
- """
-
- if data_loader is None:
- data_loader = self._data_loader(X)
- return self._predict(data_loader).softmax(axis=1).cpu().numpy()
-
- def _score(self, data_loader) -> Tuple[float, float]:
- """
- Internal method to compute loss and accuracy for the data provided through a DataLoader.
-
- Parameters
- ----------
- data_loader : DataLoader
- Data loader to use for evaluation.
-
- Returns
- -------
- Tuple[float, float]
- mean_loss: float, The mean loss of the model on the provided data.
- accuracy: float, The accuracy of the model on the provided data.
- """
- model = self.model
- criterion = self.criterion
- device = self.device
-
- model.eval()
-
- total_correct_num, total_num, total_loss = 0, 0, 0.0
-
- with torch.no_grad():
- for data, target in data_loader:
- data, target = data.to(device), target.to(device)
-
- out = model(data)
-
- if len(out.shape) > 1:
- correct_num = (target == out.argmax(axis=1)).sum().item()
- else:
- correct_num = (target == (out > 0.5)).sum().item()
- loss = criterion(out, target)
- total_loss += loss.item() * data.size(0)
-
- total_correct_num += correct_num
- total_num += data.size(0)
-
- mean_loss = total_loss / total_num
- accuracy = total_correct_num / total_num
-
- return mean_loss, accuracy
-
- def score(
- self, data_loader: DataLoader = None, X: List[Any] = None, y: List[int] = None
- ) -> float:
- """
- Validate the model.
-
- Parameters
- ----------
- data_loader : DataLoader, optional
- The data loader used for scoring, by default None.
- X : List[Any], optional
- The input data, by default None.
- y : List[int], optional
- The target data, by default None.
-
- Returns
- -------
- float
- The accuracy of the model.
- """
- print_log("Start machine learning model validation", logger="current")
-
- if data_loader is None:
- data_loader = self._data_loader(X, y)
- mean_loss, accuracy = self._score(data_loader)
- print_log(
- f"mean loss: {mean_loss:.3f}, accuray: {accuracy:.3f}", logger="current"
- )
- return accuracy
-
- def _data_loader(
- self,
- X: List[Any],
- y: List[int] = None,
- ) -> DataLoader:
- """
- Generate a DataLoader for user-provided input and target data.
-
- Parameters
- ----------
- X : List[Any]
- Input samples.
- y : List[int], optional
- Target labels. If None, dummy labels are created, by default None.
-
- Returns
- -------
- DataLoader
- A DataLoader providing batches of (X, y) pairs.
- """
-
- if X is None:
- raise ValueError("X should not be None.")
- if y is None:
- y = [0] * len(X)
- if not (len(y) == len(X)):
- raise ValueError("X and y should have equal length.")
-
- dataset = ClassificationDataset(X, y, transform=self.transform)
- data_loader = DataLoader(
- dataset,
- batch_size=self.batch_size,
- shuffle=True,
- num_workers=int(self.num_workers),
- collate_fn=self.collate_fn,
- )
- return data_loader
-
- def save(self, epoch_id: int = 0, save_path: str = None) -> None:
- """
- Save the model and the optimizer.
-
- Parameters
- ----------
- epoch_id : int
- The epoch id.
- save_path : str, optional
- The path to save the model, by default None.
- """
- if self.save_dir is None and save_path is None:
- raise ValueError(
- "'save_dir' and 'save_path' should not be None simultaneously."
- )
-
- if save_path is None:
- save_path = os.path.join(
- self.save_dir, f"model_checkpoint_epoch_{epoch_id}.pth"
- )
- if not os.path.exists(self.save_dir):
- os.makedirs(self.save_dir)
-
- print_log(f"Checkpoints will be saved to {save_path}", logger="current")
-
- save_parma_dic = {
- "model": self.model.state_dict(),
- "optimizer": self.optimizer.state_dict(),
- }
-
- torch.save(save_parma_dic, save_path)
-
- def load(self, load_path: str = "") -> None:
- """
- Load the model and the optimizer.
-
- Parameters
- ----------
- load_path : str
- The directory to load the model, by default "".
- """
-
- if load_path is None:
- raise ValueError("Load path should not be None.")
-
- print_log(
- f"Loads checkpoint by local backend from path: {load_path}",
- logger="current",
- )
-
- param_dic = torch.load(load_path)
- self.model.load_state_dict(param_dic["model"])
- if "optimizer" in param_dic.keys():
- self.optimizer.load_state_dict(param_dic["optimizer"])
|