|
- # coding: utf-8
- # ================================================================#
- # Copyright (C) 2021 Freecss All rights reserved.
- #
- # File Name :framework.py
- # Author :freecss
- # Email :karlfreecss@gmail.com
- # Created Date :2021/06/07
- # Description :
- #
- # ================================================================#
-
- import pickle as pk
- import torch
- import torch.nn as nn
- import numpy as np
- import os
-
- from utils.plog import INFO, DEBUG, clocker
- from utils.utils import flatten, reform_idx, block_sample, gen_mappings, mapping_res, remapping_res
-
- from models.nn import MLP, SymbolNetAutoencoder
- from models.basic_model import BasicModel, BasicDataset
- from datasets.hed.get_hed import get_pretrain_data
-
- def result_statistics(pred_Z, Z, Y, logic_forward, char_acc_flag):
- result = {}
- if char_acc_flag:
- char_acc_num = 0
- char_num = 0
- for pred_z, z in zip(pred_Z, Z):
- char_num += len(z)
- for zidx in range(len(z)):
- if pred_z[zidx] == z[zidx]:
- char_acc_num += 1
- char_acc = char_acc_num / char_num
- result["Character level accuracy"] = char_acc
-
- abl_acc_num = 0
- for pred_z, y in zip(pred_Z, Y):
- if logic_forward(pred_z) == y:
- abl_acc_num += 1
- abl_acc = abl_acc_num / len(Y)
- result["ABL accuracy"] = abl_acc
-
- return result
-
-
- def filter_data(X, abduced_Z):
- finetune_Z = []
- finetune_X = []
- for abduced_x, abduced_z in zip(X, abduced_Z):
- if abduced_z is not []:
- finetune_X.append(abduced_x)
- finetune_Z.append(abduced_z)
- return finetune_X, finetune_Z
-
-
-
-
- def train(model, abducer, train_data, test_data, epochs=50, sample_num=-1, verbose=-1):
- train_X, train_Z, train_Y = train_data
- test_X, test_Z, test_Y = test_data
-
- # Set default parameters
- if sample_num == -1:
- sample_num = len(train_X)
-
- if verbose < 1:
- verbose = epochs
-
- char_acc_flag = 1
- if train_Z == None:
- char_acc_flag = 0
- train_Z = [None] * len(train_X)
-
- predict_func = clocker(model.predict)
- train_func = clocker(model.train)
- abduce_func = clocker(abducer.batch_abduce)
-
- for epoch_idx in range(epochs):
- X, Z, Y = block_sample(train_X, train_Z, train_Y, sample_num, epoch_idx)
- preds_res = predict_func(X)
- # input()
- abduced_Z = abduce_func(preds_res, Y)
-
- if ((epoch_idx + 1) % verbose == 0) or (epoch_idx == epochs - 1):
- res = result_statistics(preds_res['cls'], Z, Y, abducer.kb.logic_forward, char_acc_flag)
- INFO('epoch: ', epoch_idx + 1, ' ', res)
-
- finetune_X, finetune_Z = filter_data(X, abduced_Z)
- if len(finetune_X) > 0:
- # model.valid(finetune_X, finetune_Z)
- train_func(finetune_X, finetune_Z)
- else:
- INFO("lack of data, all abduced failed", len(finetune_X))
-
- return res
-
-
- def hed_pretrain(kb, cls, recorder):
- cls_autoencoder = SymbolNetAutoencoder(num_classes=len(kb.pseudo_label_list))
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- if not os.path.exists("./weights/pretrain_weights.pth"):
- INFO("Pretrain Start")
- pretrain_data_X, pretrain_data_Y = get_pretrain_data(['0', '1', '10', '11'])
- pretrain_data = BasicDataset(pretrain_data_X, pretrain_data_Y)
- pretrain_data_loader = torch.utils.data.DataLoader(pretrain_data, batch_size=64, shuffle=True)
-
- criterion = nn.MSELoss()
- optimizer = torch.optim.RMSprop(cls_autoencoder.parameters(), lr=0.001, alpha=0.9, weight_decay=1e-6)
-
- pretrain_model = BasicModel(cls_autoencoder, criterion, optimizer, device, save_interval=1, save_dir=recorder.save_dir, num_epochs=10, recorder=recorder)
- pretrain_model.fit(pretrain_data_loader)
- torch.save(cls_autoencoder.base_model.state_dict(), "./weights/pretrain_weights.pth")
- cls.load_state_dict(cls_autoencoder.base_model.state_dict())
-
- else:
- cls.load_state_dict(torch.load("./weights/pretrain_weights.pth"))
-
-
- def get_char_acc(model, X, consistent_pred_res, mapping):
- original_pred_res = model.predict(X)['cls']
- pred_res = flatten(mapping_res(original_pred_res, mapping))
- INFO('Current model\'s output: ', pred_res)
- INFO('Abduced labels: ', flatten(consistent_pred_res))
- assert len(pred_res) == len(flatten(consistent_pred_res))
- return sum([pred_res[idx] == flatten(consistent_pred_res)[idx] for idx in range(len(pred_res))]) / len(pred_res)
-
-
- def abduce_and_train(model, abducer, mapping, train_X_true, select_num):
- select_idx = np.random.randint(len(train_X_true), size=select_num)
- X = []
- for idx in select_idx:
- X.append(train_X_true[idx])
-
- original_pred_res = model.predict(X)['cls']
-
- if mapping == None:
- mappings = gen_mappings(['+', '=', 0, 1],['+', '=', 0, 1])
- else:
- mappings = [mapping]
-
- consistent_idx = []
- consistent_pred_res = []
-
- for m in mappings:
- pred_res = mapping_res(original_pred_res, m)
- max_abduce_num = 20
- solution = abducer.zoopt_get_solution(pred_res, [1] * len(pred_res), max_abduce_num)
- all_address_flag = reform_idx(solution, pred_res)
-
- consistent_idx_tmp = []
- consistent_pred_res_tmp = []
-
- for idx in range(len(pred_res)):
- address_idx = [i for i, flag in enumerate(all_address_flag[idx]) if flag != 0]
- candidate = abducer.kb.address_by_idx([pred_res[idx]], 1, address_idx, True)
- if len(candidate) > 0:
- consistent_idx_tmp.append(idx)
- consistent_pred_res_tmp.append(candidate[0][0])
-
- if len(consistent_idx_tmp) > len(consistent_idx):
- consistent_idx = consistent_idx_tmp
- consistent_pred_res = consistent_pred_res_tmp
- if len(mappings) > 1:
- mapping = m
-
- if len(consistent_idx) == 0:
- return 0, 0, None
-
- if len(mappings) > 1:
- INFO('Final mapping is: ', mapping)
-
- INFO('Train pool size is:', len(flatten(consistent_pred_res)))
- INFO("Start to use abduced pseudo label to train model...")
- model.train([X[idx] for idx in consistent_idx], remapping_res(consistent_pred_res, mapping))
-
- consistent_acc = len(consistent_idx) / select_num
- char_acc = get_char_acc(model, [X[idx] for idx in consistent_idx], consistent_pred_res, mapping)
- INFO('consistent_acc is %s, char_acc is %s' % (consistent_acc, char_acc))
- return consistent_acc, char_acc, mapping
-
-
- def output_rules(rules):
- all_rule_dict = {}
- for rule in rules:
- for r in rule:
- all_rule_dict[r] = 1 if r not in all_rule_dict else all_rule_dict[r] + 1
- rule_dict = {rule: cnt for rule, cnt in all_rule_dict.items()}# if cnt >= 5}
- return rule_dict
-
- def get_rules_from_data(model, abducer, mapping, train_X_true, samples_per_rule, logic_output_dim):
- rules = []
- for _ in range(logic_output_dim):
- while True:
- select_idx = np.random.randint(len(train_X_true), size=samples_per_rule)
- X = []
- for idx in select_idx:
- X.append(train_X_true[idx])
- original_pred_res = model.predict(X)['cls']
- pred_res = mapping_res(original_pred_res, mapping)
-
- consistent_idx = []
- consistent_pred_res = []
- for idx in range(len(pred_res)):
- if abducer.kb.logic_forward([pred_res[idx]]):
- consistent_idx.append(idx)
- consistent_pred_res.append(pred_res[idx])
-
- if len(consistent_pred_res) != 0:
- rule = abducer.abduce_rules(consistent_pred_res)
- if rule != None:
- break
- rules.append(rule)
- return rules
-
-
- def get_mlp_vector(model, abducer, mapping, X, rules):
- original_pred_res = model.predict([X])['cls']
- pred_res = flatten(mapping_res(original_pred_res, mapping))
- vector = []
- for rule in rules:
- if abducer.kb.consist_rule(pred_res, rule):
- vector.append(1)
- else:
- vector.append(0)
- return vector
-
-
- def get_mlp_data(model, abducer, mapping, X_true, X_false, rules):
- mlp_vectors = []
- mlp_labels = []
- for X in X_true:
- mlp_vectors.append(get_mlp_vector(model, abducer, mapping, X, rules))
- mlp_labels.append(1)
- for X in X_false:
- mlp_vectors.append(get_mlp_vector(model, abducer, mapping, X, rules))
- mlp_labels.append(0)
- return np.array(mlp_vectors, dtype=np.float32), np.array(mlp_labels, dtype=np.int64)
-
- def get_all_mlp_data(model, abducer, mapping, X_true, X_false, rules, min_len, max_len):
- for equation_len in range(min_len, max_len + 1):
- mlp_vectors, mlp_labels = get_mlp_data(model, abducer, mapping, X_true[equation_len], X_false[equation_len], rules)
- if equation_len == min_len:
- all_mlp_vectors = mlp_vectors
- all_mlp_labels = mlp_labels
- else:
- all_mlp_vectors = np.concatenate((all_mlp_vectors, mlp_vectors))
- all_mlp_labels = np.concatenate((all_mlp_labels, mlp_labels))
- return all_mlp_vectors, all_mlp_labels
-
-
- def validation(model, abducer, mapping, logic_output_dim, rules, train_X_true, train_X_false, val_X_true, val_X_false):
- mlp_train_vectors, mlp_train_labels = get_mlp_data(model, abducer, mapping, train_X_true, train_X_false, rules)
- mlp_train_data = BasicDataset(mlp_train_vectors, mlp_train_labels)
-
- mlp_val_vectors, mlp_val_labels = get_mlp_data(model, abducer, mapping, val_X_true, val_X_false, rules)
- mlp_val_data = BasicDataset(mlp_val_vectors, mlp_val_labels)
-
- best_accuracy = 0
- # Try three times to find the best mlp
- for _ in range(3):
- INFO("Training mlp...")
- mlp = MLP(input_dim=logic_output_dim)
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(mlp.parameters(), lr=0.01, betas=(0.9, 0.999))
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- mlp_model = BasicModel(mlp, criterion, optimizer, device, batch_size=128, num_epochs=100)
- mlp_train_data_loader = torch.utils.data.DataLoader(mlp_train_data, batch_size=128, shuffle=True)
-
- loss = mlp_model.fit(mlp_train_data_loader)
- INFO("mlp training final loss is %f" % loss)
-
- mlp_val_data_loader = torch.utils.data.DataLoader(mlp_val_data, batch_size=64, shuffle=True)
- accuracy = mlp_model.val(mlp_val_data_loader)
-
- if accuracy > best_accuracy:
- best_accuracy = accuracy
- return best_accuracy
-
-
-
-
-
-
- def train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8):
- train_X = train_data
- val_X = val_data
-
- logic_output_dim = 50
- samples_per_rule = 3
-
- # Start training / for each length of equations
- for equation_len in range(min_len, max_len):
- INFO("============== equation_len: %d-%d ================" % (equation_len, equation_len + 1))
- train_X_true = train_X[1][equation_len]
- train_X_false = train_X[0][equation_len]
- val_X_true = val_X[1][equation_len]
- val_X_false = val_X[0][equation_len]
-
- train_X_true.extend(train_X[1][equation_len + 1])
- train_X_false.extend(train_X[0][equation_len + 1])
- val_X_true.extend(val_X[1][equation_len + 1])
- val_X_false.extend(val_X[0][equation_len + 1])
-
- condition_cnt = 0
- while True:
- if equation_len == min_len:
- mapping = None
-
- # Abduce and train NN
- consistent_acc, char_acc, mapping = abduce_and_train(model, abducer, mapping, train_X_true, select_num)
- if consistent_acc == 0:
- continue
-
- # Test if we can use mlp to evaluate
- if consistent_acc >= 0.9 and char_acc >= 0.9:
- condition_cnt += 1
- else:
- condition_cnt = 0
-
- # The condition has been satisfied continuously five times
- if condition_cnt >= 5:
- INFO("Now checking if we can go to next course")
- rules = get_rules_from_data(model, abducer, mapping, train_X_true, samples_per_rule, logic_output_dim)
- INFO('Learned rules from data:', output_rules(rules))
- best_accuracy = validation(model, abducer, mapping, logic_output_dim, rules, train_X_true, train_X_false, val_X_true, val_X_false)
- INFO('best_accuracy is %f\n' %(best_accuracy))
- # decide next course or restart
- if best_accuracy > 0.88:
- torch.save(model.cls_list[0].model.state_dict(), "./weights/weights_%d.pth" % equation_len)
- break
- else:
- if equation_len == min_len:
- model.cls_list[0].model.load_state_dict(torch.load("./weights/pretrain_weights.pth"))
- else:
- model.cls_list[0].model.load_state_dict(torch.load("./weights/weights_%d.pth" % (equation_len - 1)))
- condition_cnt = 0
- INFO('Reload Model and retrain')
-
- return model, mapping
-
- def hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8):
- train_X = train_data
- test_X = test_data
-
- # Calcualte how many equations should be selected in each length
- # for each length, there are select_equation_cnt[equation_len] rules
- print("Now begin to train final mlp model")
- select_equation_cnt = []
- len_cnt = max_len - min_len + 1
- logic_output_dim = 50
- select_equation_cnt += [0] * min_len
- if logic_output_dim % len_cnt == 0:
- select_equation_cnt += [logic_output_dim // len_cnt] * len_cnt
- else:
- select_equation_cnt += [logic_output_dim // len_cnt] * len_cnt
- select_equation_cnt[-1] += logic_output_dim % len_cnt
- assert sum(select_equation_cnt) == logic_output_dim
-
- # Abduce rules
- rules = []
- samples_per_rule = 3
- for equation_len in range(min_len, max_len + 1):
- equation_rules = get_rules_from_data(model, abducer, mapping, train_X[1][equation_len], samples_per_rule, select_equation_cnt[equation_len])
- rules.extend(equation_rules)
- INFO('Learned rules from data:', output_rules(rules))
-
- mlp_train_vectors, mlp_train_labels = get_all_mlp_data(model, abducer, mapping, train_X[1], train_X[0], rules, min_len, max_len)
- mlp_train_data = BasicDataset(mlp_train_vectors, mlp_train_labels)
-
- # Try three times to find the best mlp
- for _ in range(3):
- mlp = MLP(input_dim=logic_output_dim)
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(mlp.parameters(), lr=0.01, betas=(0.9, 0.999))
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- mlp_model = BasicModel(mlp, criterion, optimizer, device, batch_size=128, num_epochs=100)
- mlp_train_data_loader = torch.utils.data.DataLoader(mlp_train_data, batch_size=128, shuffle=True)
-
- loss = mlp_model.fit(mlp_train_data_loader)
- INFO("mlp training final loss is %f" % loss)
-
- for equation_len in range(5, 27):
- mlp_test_vectors, mlp_test_labels = get_mlp_data(model, abducer, mapping, test_X[1][equation_len], test_X[0][equation_len], rules)
- mlp_test_data = BasicDataset(mlp_test_vectors, mlp_test_labels)
- mlp_test_data_loader = torch.utils.data.DataLoader(mlp_test_data, batch_size=64, shuffle=True)
- accuracy = mlp_model.val(mlp_test_data_loader)
- INFO("The accuracy of testing length %d equations is: %f" % (equation_len, accuracy))
- INFO("\n")
-
- if __name__ == "__main__":
- pass
|