# coding: utf-8 # ================================================================# # Copyright (C) 2021 Freecss All rights reserved. # # File Name :share_example.py # Author :freecss # Email :karlfreecss@gmail.com # Created Date :2021/06/07 # Description : # # ================================================================# import sys sys.path.append("../") from abl.utils.plog import logger, INFO import torch.nn as nn import torch from abl.models.nn import LeNet5, SymbolNet from abl.models.basic_model import BasicModel, BasicDataset from abl.models.wabl_models import DecisionTree, WABLBasicModel from multiprocessing import Pool from abl.abducer.abducer_base import AbducerBase, HED_Abducer from abl.abducer.kb import add_KB, HWF_KB, prolog_KB, HED_prolog_KB from datasets.mnist_add.get_mnist_add import get_mnist_add from datasets.hwf.get_hwf import get_hwf from datasets.hed.get_hed import get_hed, split_equation from abl import framework_hed def run_test(): # kb = add_KB() kb = HWF_KB(GKB_flag=True) abducer = AbducerBase(kb, 'confidence') # kb = HED_prolog_KB(pseudo_label_list=[1, 0, '+', '='], pl_file='../examples/datasets/hed/learn_add.pl') # abducer = HED_Abducer(kb) recorder = logger() # total_train_data = get_hed(train=True) # train_data, val_data = split_equation(total_train_data, 3, 1) # test_data = get_hed(train=False) # train_data = get_mnist_add(train=True, get_pseudo_label=True) # test_data = get_mnist_add(train=False, get_pseudo_label=True) train_data = get_hwf(train=True, get_pseudo_label=True) test_data = get_hwf(train=False, get_pseudo_label=True) # cls = LeNet5(num_classes=len(kb.pseudo_label_list), image_size=(train_data[0][0][0].shape[1:])) cls = SymbolNet(num_classes=len(kb.pseudo_label_list), image_size=(train_data[0][0][0].shape[1:])) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # framework_hed.hed_pretrain(kb, cls, recorder) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-6) # optimizer = torch.optim.Adam(cls.parameters(), lr=0.001, betas=(0.9, 0.99)) base_model = BasicModel(cls, criterion, optimizer, device, save_interval=1, save_dir=recorder.save_dir, batch_size=32, num_epochs=1, recorder=recorder) model = WABLBasicModel(base_model, kb.pseudo_label_list) # model, mapping = framework_hed.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8) # framework_hed.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8) framework_hed.train(model, abducer, train_data, test_data, sample_num=-1, verbose=1) recorder.dump() return True if __name__ == "__main__": run_test()