# coding: utf-8 # ================================================================# # Copyright (C) 2021 Freecss All rights reserved. # # File Name :framework.py # Author :freecss # Email :karlfreecss@gmail.com # Created Date :2021/06/07 # Description : # # ================================================================# from .utils.plog import INFO, clocker from .utils.utils import block_sample, float_parameter def result_statistics(pred_Z, Z, Y, logic_forward, char_acc_flag): result = {} if char_acc_flag: char_acc_num = 0 char_num = 0 for pred_z, z in zip(pred_Z, Z): char_num += len(z) for zidx in range(len(z)): if pred_z[zidx] == z[zidx]: char_acc_num += 1 char_acc = char_acc_num / char_num result["Character level accuracy"] = char_acc abl_acc_num = 0 for pred_z, y in zip(pred_Z, Y): if logic_forward(pred_z) == y: abl_acc_num += 1 abl_acc = abl_acc_num / len(Y) result["ABL accuracy"] = abl_acc return result def filter_data(X, abduced_Z): finetune_Z = [] finetune_X = [] for x, abduced_z in zip(X, abduced_Z): if len(abduced_z) > 0: finetune_X.append(x) finetune_Z.append(abduced_z) return finetune_X, finetune_Z def train(model, abducer, train_data, epochs=50, sample=-1, verbose=-1): train_X, train_Z, train_Y = train_data # Set default parameters sample_num = float_parameter(sample, len(train_X)) part_num = (len(train_X) - 1) // sample_num + 1 if verbose < 1: verbose = epochs char_acc_flag = 1 if train_Z == None: char_acc_flag = 0 train_Z = [None] * len(train_X) predict_func = clocker(model.predict) train_func = clocker(model.train) abduce_func = clocker(abducer.batch_abduce) for epoch in range(epochs): for seg_idx in range(part_num): X, Z, Y = block_sample(train_X, train_Z, train_Y, sample_num, seg_idx) INFO("epoch:", epoch + 1, ", seg_idx:", seg_idx + 1, "/", part_num, ", data num:", len(X)) preds_res = predict_func(X) abduced_Z = abduce_func(preds_res, Y) ## TODO: change verbose if ((seg_idx + 1) % verbose == 0) or (seg_idx == epochs - 1): pseudo_label = [[abducer.mapping[label] for label in formula] for formula in preds_res['label']] res = result_statistics(pseudo_label, Z, Y, abducer.kb.logic_forward, char_acc_flag) INFO("seg: ", seg_idx + 1, " ", res) finetune_X, finetune_Z = filter_data(X, abduced_Z) finetune_Z = [[abducer.remapping[symbol] for symbol in formula] for formula in finetune_Z] if len(finetune_X) > 0: # model.valid(finetune_X, finetune_Z) train_func(finetune_X, finetune_Z) else: INFO("lack of data, all abduced failed", len(finetune_X)) return model ## TODO: test def test(model, abducer, test_data): test_X, test_Z, test_Y = test_data predict_func = clocker(model.predict) preds_res = predict_func(test_X) char_acc_flag = 1 if test_Z == None: char_acc_flag = 0 test_Z = [None] * len(test_X) res = result_statistics(preds_res["cls"], test_Z, test_Y, abducer.kb.logic_forward, char_acc_flag) INFO(res) if __name__ == "__main__": pass