# coding: utf-8 #================================================================# # Copyright (C) 2021 Freecss All rights reserved. # # File Name :share_example.py # Author :freecss # Email :karlfreecss@gmail.com # Created Date :2021/06/07 # Description : # #================================================================# from utils.plog import logger import framework import torch.nn as nn import torch from models.lenet5 import LeNet5, SymbolNet from models.basic_model import BasicModel from models.wabl_models import WABLBasicModel from multiprocessing import Pool import os from abducer.abducer_base import AbducerBase from abducer.kb import add_KB, hwf_KB from datasets.mnist_add.get_mnist_add import get_mnist_add from datasets.hwf.get_hwf import get_hwf def run_test(): # kb = add_KB(True) kb = hwf_KB(True) abducer = AbducerBase(kb) recorder = logger() # train_X, train_Z, train_Y = get_mnist_add(train = True, get_pseudo_label = True) # test_X, test_Z, test_Y = get_mnist_add(train = False, get_pseudo_label = True) train_data = get_hwf(train = True, get_pseudo_label = True) test_data = get_hwf(train = False, get_pseudo_label = True) # cls = LeNet5(num_classes=len(kb.pseudo_label_list), image_size=(train_data[0][0][0].shape[1:])) cls = SymbolNet(num_classes=len(kb.pseudo_label_list)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(cls.parameters(), lr=0.001, betas=(0.9, 0.99)) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") base_model = BasicModel(cls, criterion, optimizer, device, save_interval=1, save_dir=recorder.save_dir, num_epochs=1, recorder=recorder) model = WABLBasicModel(base_model, kb.pseudo_label_list) res = framework.train(model, abducer, train_data, test_data, sample_num = 10000, verbose = 1) recorder.print(res) recorder.dump() return True if __name__ == "__main__": run_test()