| @@ -192,6 +192,7 @@ We provide several examples in `examples/`. Each example is stored in a separate | |||
| + [Handwritten Formula (HWF)](https://github.com/AbductiveLearning/ABLkit/tree/main/examples/hwf) | |||
| + [Handwritten Equation Decipherment](https://github.com/AbductiveLearning/ABLkit/tree/main/examples/hed) | |||
| + [Zoo](https://github.com/AbductiveLearning/ABLkit/tree/main/examples/zoo) | |||
| + [BDD-OIA](https://github.com/AbductiveLearning/ABLkit/tree/main/examples/bdd_oia) | |||
| ## References | |||
| @@ -180,8 +180,8 @@ class Reasoner: | |||
| candidates_idxs = [[self.label_to_idx[x] for x in c] for c in candidates] | |||
| return avg_confidence_dist(data_example.pred_prob, candidates_idxs) | |||
| else: | |||
| candidate_idxs = [[self.label_to_idx[x] for x in c] for c in candidates] | |||
| cost_list = self.dist_func(data_example, candidates, candidate_idxs, reasoning_results) | |||
| candidates_idxs = [[self.label_to_idx[x] for x in c] for c in candidates] | |||
| cost_list = self.dist_func(data_example, candidates, candidates_idxs, reasoning_results) | |||
| if len(cost_list) != len(candidates): | |||
| raise ValueError( | |||
| "The length of the array returned by dist_func must be equal to the number " | |||
| @@ -0,0 +1,50 @@ | |||
| # BDD-OIA | |||
| This example shows an implementation of [BDD-OIA](https://twizwei.github.io/bddoia_project/) task. The BDD-OIA dataset comprises frames extracted from driving scene videos, which are utilized for autonomous driving predictions. Each frame is annotated with 4 binary labels, indicating the possible actions, namely $\textsf{move forward}$, $\textsf{stop}$, $\textsf{turn left}$, $\textsf{turn right}$. Each frame is also annotated with 21 intermediate binary concepts such as $\textsf{red light}$, $\textsf{road clear}$, etc., underlying the reasons for the possible actions. | |||
| The objective is to predict possible actions for each frame. During training, we only make use of the label supervision, along with a knowledge base, which comprises information about the relations between concepts and actions, e.g., $\textsf{red light} \lor \textsf{traffic sign} \lor \textsf{obstacle} \implies \textsf{stop}$. The training set consists of 16,000 frames, while the test set contains 4,500 annotated data points. | |||
| Before usage, the dataset was pre-processed by [Marconato et al. (2023)](https://proceedings.neurips.cc/paper_files/paper/2023/file/e560202b6e779a82478edb46c6f8f4dd-Paper-Conference.pdf) using a pretrained Faster-RCNN model on BDD-100k, in conjunction with the first module in CBM-AUC [(Sawada & Nakamura, 2022)](https://arxiv.org/abs/2202.01459), resulting in embeddings of dimension 2048. | |||
| ## Run | |||
| ```bash | |||
| pip install -r requirements.txt | |||
| cd dataset | |||
| unzip dataset.zip | |||
| cd .. | |||
| python main.py | |||
| ``` | |||
| ## Usage | |||
| ```bash | |||
| usage: main.py [-h] [--no-cuda] [--epochs EPOCHS] [--lr LR] | |||
| [--batch-size BATCH_SIZE] [--loops LOOPS] | |||
| [--segment_size SEGMENT_SIZE] | |||
| [--save_interval SAVE_INTERVAL] | |||
| [--max-revision MAX_REVISION] | |||
| [--require-more-revision REQUIRE_MORE_REVISION] | |||
| BDD_OIA example | |||
| optional arguments: | |||
| -h, --help show this help message and exit | |||
| --no-cuda disables CUDA training | |||
| --epochs EPOCHS number of epochs in each learning loop iteration | |||
| (default : 1) | |||
| --lr LR base model learning rate (default : 0.002) | |||
| --batch-size BATCH_SIZE | |||
| base model batch size (default : 32) | |||
| --loops LOOPS | |||
| number of loop iterations (default : 2) | |||
| --segment_size SEGMENT_SIZE | |||
| segment size (default : 0.01) | |||
| --save_interval SAVE_INTERVAL | |||
| save interval (default : 1) | |||
| --max-revision MAX_REVISION | |||
| maximum revision in reasoner (default : 3) | |||
| -require-more-revision REQUIRE_MORE_REVISION | |||
| require more revision in reasoner (default : 3) | |||
| ``` | |||
| @@ -0,0 +1,23 @@ | |||
| import numpy as np | |||
| from typing import List, Any | |||
| from ablkit.data import ListData | |||
| from ablkit.bridge import SimpleBridge | |||
| class BDDBridge(SimpleBridge): | |||
| def idx_to_pseudo_label(self, data_examples: ListData) -> List[List[Any]]: | |||
| pred_idx = data_examples.pred_idx # [ ndarray(1,nc),... ] | |||
| pred_pseudo_label = [] | |||
| for sub_list in pred_idx: | |||
| sub_list = sub_list.squeeze() # 1 x nc -> nc | |||
| pred_pseudo_label.append([self.reasoner.idx_to_label[_idx] for _idx in sub_list]) | |||
| data_examples.pred_pseudo_label = pred_pseudo_label | |||
| return data_examples.pred_pseudo_label | |||
| def pseudo_label_to_idx(self, data_examples: ListData) -> List[List[Any]]: | |||
| abduced_pseudo_label = data_examples.abduced_pseudo_label | |||
| abduced_idx = [] | |||
| for sub_list in abduced_pseudo_label: | |||
| sub_list = np.array([self.reasoner.label_to_idx[_lab] for _lab in sub_list]) | |||
| abduced_idx.append(sub_list) | |||
| data_examples.abduced_idx = abduced_idx | |||
| return data_examples.abduced_idx | |||
| @@ -0,0 +1,18 @@ | |||
| import os | |||
| import numpy as np | |||
| CURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) | |||
| def get_dataset(fname, get_pseudo_label=True): | |||
| fname = os.path.join(CURRENT_DIR, fname) | |||
| data = np.load(fname) | |||
| X = data["X"] | |||
| X = [[emb.astype(np.float32)] for emb in X] | |||
| pseudo_label = data["pseudo_label"].astype(int).tolist() if get_pseudo_label else None | |||
| Y = data["Y"][:, :4].astype(int).tolist() | |||
| Y = [tuple(y) for y in Y] | |||
| return X, pseudo_label, Y | |||
| if __name__ == '__main__': | |||
| dataset = get_dataset("val.npz") | |||
| @@ -0,0 +1,147 @@ | |||
| import argparse | |||
| import os.path as osp | |||
| import numpy as np | |||
| import torch | |||
| from torch import optim | |||
| from ablkit.data.evaluation import SymbolAccuracy | |||
| from ablkit.reasoning import Reasoner | |||
| from ablkit.utils import ABLLogger, print_log | |||
| from models.nn import * | |||
| from models.bdd_nn import BDDNN | |||
| from models.bdd_model import BDDABLModel | |||
| from reasoning.bddkb import BDDKB | |||
| from dataset.data_util import get_dataset | |||
| from bridge import BDDBridge | |||
| from metric import BDDReasoningMetric | |||
| def multi_label_confidence_dist(data_example, candidates, candidates_idxs, reasoning_results): | |||
| pred_prob = data_example.pred_prob.T # nc x 1 | |||
| pred_prob = np.concatenate([1-pred_prob, pred_prob], axis=1) # nc x 2 | |||
| cols = np.arange(len(candidates_idxs[0]))[None, :] | |||
| corr_prob = pred_prob[cols, candidates_idxs] | |||
| costs = - np.sum(np.log(corr_prob + 1e-6), axis=1) | |||
| return costs | |||
| def get_args(): | |||
| parser = argparse.ArgumentParser(description="BDD-OIA example") | |||
| parser.add_argument( | |||
| "--no-cuda", action="store_true", default=False, help="disables CUDA training" | |||
| ) | |||
| parser.add_argument( | |||
| "--epochs", | |||
| type=int, | |||
| default=1, | |||
| help="number of epochs in each learning loop iteration (default : 1)", | |||
| ) | |||
| parser.add_argument( | |||
| "--lr", type=float, default=2e-3, help="base model learning rate (default : 0.002)" | |||
| ) | |||
| parser.add_argument( | |||
| "--batch-size", type=int, default=32, help="base model batch size (default : 32)" | |||
| ) | |||
| parser.add_argument( | |||
| "--loops", type=int, default=2, help="number of loop iterations (default : 2)" | |||
| ) | |||
| parser.add_argument( | |||
| "--segment_size", type=int, default=0.01, help="segment size (default : 0.01)" | |||
| ) | |||
| parser.add_argument("--save_interval", type=int, default=1, help="save interval (default : 1)") | |||
| parser.add_argument( | |||
| "--max-revision", type=int, default=3, help="maximum revision in reasoner (default : 3)" | |||
| ) | |||
| parser.add_argument( | |||
| "--require-more-revision", | |||
| type=int, | |||
| default=3, | |||
| help="require more revision in reasoner (default : 3)", | |||
| ) | |||
| args = parser.parse_args() | |||
| return args | |||
| def main(): | |||
| args = get_args() | |||
| # Build logger | |||
| print_log("Abductive Learning on the BDD-OIA example.", logger="current") | |||
| # -- Working with Data ------------------------------ | |||
| print_log("Working with Data.", logger="current") | |||
| train_data = get_dataset(fname="train.npz", get_pseudo_label=True) | |||
| val_data = get_dataset(fname="val.npz", get_pseudo_label=True) | |||
| test_data = get_dataset(fname="test.npz", get_pseudo_label=True) | |||
| # -- Building the Learning Part --------------------- | |||
| print_log("Building the Learning Part.", logger="current") | |||
| # Build necessary components for BDDNN | |||
| cls = ConceptNet() | |||
| loss_fn = nn.BCEWithLogitsLoss() | |||
| optimizer = optim.Adam(cls.parameters(), lr=args.lr) | |||
| use_cuda = not args.no_cuda and torch.cuda.is_available() | |||
| device = torch.device("cuda" if use_cuda else "cpu") | |||
| scheduler = optim.lr_scheduler.OneCycleLR( | |||
| optimizer, | |||
| max_lr=args.lr, | |||
| pct_start=0.15, | |||
| epochs=args.loops, | |||
| steps_per_epoch=int(1 / args.segment_size) + 1, | |||
| ) | |||
| # Build BDDNN | |||
| base_model = BDDNN( | |||
| cls, | |||
| loss_fn, | |||
| optimizer, | |||
| scheduler=scheduler, | |||
| device=device, | |||
| batch_size=args.batch_size, | |||
| num_epochs=args.epochs, | |||
| ) | |||
| # Build ABLModel | |||
| model = BDDABLModel(base_model) | |||
| # -- Building the Reasoning Part -------------------- | |||
| print_log("Building the Reasoning Part.", logger="current") | |||
| # Build knowledge base | |||
| kb = BDDKB() | |||
| # Create reasoner | |||
| reasoner = Reasoner( | |||
| kb, | |||
| dist_func=multi_label_confidence_dist, | |||
| max_revision=args.max_revision, | |||
| require_more_revision=args.require_more_revision | |||
| ) | |||
| # -- Building Evaluation Metrics -------------------- | |||
| print_log("Building Evaluation Metrics.", logger="current") | |||
| metric_list = [SymbolAccuracy(prefix="bdd_oia"), BDDReasoningMetric(kb=kb, prefix="bdd_oia")] | |||
| # -- Bridging Learning and Reasoning ---------------- | |||
| print_log("Bridge Learning and Reasoning.", logger="current") | |||
| bridge = BDDBridge(model, reasoner, metric_list) | |||
| # Retrieve the directory of the Log file and define the directory for saving the model weights. | |||
| log_dir = ABLLogger.get_current_instance().log_dir | |||
| weights_dir = osp.join(log_dir, "weights") | |||
| # Train and Test | |||
| bridge.train( | |||
| train_data=train_data, | |||
| val_data=val_data, | |||
| loops=args.loops, | |||
| segment_size=args.segment_size, | |||
| save_interval=args.save_interval, | |||
| save_dir=weights_dir, | |||
| ) | |||
| bridge.test(test_data) | |||
| if __name__ == "__main__": | |||
| main() | |||
| @@ -0,0 +1,24 @@ | |||
| from typing import Optional | |||
| from ablkit.reasoning import KBBase | |||
| from ablkit.data import BaseMetric, ListData | |||
| class BDDReasoningMetric(BaseMetric): | |||
| def __init__(self, kb: KBBase, prefix: Optional[str] = None) -> None: | |||
| super().__init__(prefix) | |||
| self.kb = kb | |||
| def process(self, data_examples: ListData) -> None: | |||
| pred_pseudo_label_list = data_examples.pred_pseudo_label | |||
| y_list = data_examples.Y | |||
| x_list = data_examples.X | |||
| for pred_pseudo_label, y, x in zip(pred_pseudo_label_list, y_list, x_list): | |||
| pred_y = self.kb.logic_forward(pred_pseudo_label, *(x,) if self.kb._num_args == 2 else ()) | |||
| for py, yy in zip(pred_y, y): | |||
| self.results.append(int(py == yy)) | |||
| def compute_metrics(self) -> dict: | |||
| results = self.results | |||
| metrics = dict() | |||
| metrics["reasoning_accuracy"] = sum(results) / len(results) | |||
| return metrics | |||
| @@ -0,0 +1,24 @@ | |||
| from typing import Dict | |||
| import numpy as np | |||
| from ablkit.data import ListData | |||
| from ablkit.learning import ABLModel | |||
| from ablkit.utils import reform_list | |||
| class BDDABLModel(ABLModel): | |||
| def predict(self, data_examples: ListData) -> Dict: | |||
| model = self.base_model | |||
| data_X = data_examples.flatten("X") | |||
| if hasattr(model, "predict_proba"): | |||
| prob = model.predict_proba(X=data_X) | |||
| label = np.where(prob > 0.5, 1, 0).astype(int) | |||
| prob = reform_list(prob, data_examples.X) | |||
| else: | |||
| prob = None | |||
| label = model.predict(X=data_X) | |||
| label = reform_list(label, data_examples.X) | |||
| data_examples.pred_idx = label | |||
| data_examples.pred_prob = prob | |||
| return {"label": label, "prob": prob} | |||
| @@ -0,0 +1,94 @@ | |||
| import logging | |||
| import os | |||
| from typing import Any, Callable, List, Optional, Tuple, Union | |||
| import numpy | |||
| import torch | |||
| from torch.utils.data import DataLoader, Dataset | |||
| from ablkit.learning import BasicNN, PredictionDataset, ClassificationDataset | |||
| from ablkit.utils.logger import print_log | |||
| class MultiLabelClassificationDataset(ClassificationDataset): | |||
| def __init__(self, X: List[Any], Y: List[int], transform: Optional[Callable[..., Any]] = None): | |||
| if (not isinstance(X, list)) or (not isinstance(Y, list)): | |||
| raise ValueError("X and Y should be of type list.") | |||
| self.X = X | |||
| self.Y = torch.FloatTensor(numpy.stack(Y, axis=0)) # float32 for BCELoss | |||
| self.transform = transform | |||
| class BDDNN(BasicNN): | |||
| def predict( | |||
| self, | |||
| data_loader: Optional[DataLoader] = None, | |||
| X: Optional[List[Any]] = None, | |||
| ) -> numpy.ndarray: | |||
| if data_loader is not None and X is not None: | |||
| print_log( | |||
| "Predict the class of input data in data_loader instead of X.", | |||
| logger="current", | |||
| level=logging.WARNING, | |||
| ) | |||
| if data_loader is None: | |||
| dataset = PredictionDataset(X, self.test_transform) | |||
| data_loader = DataLoader( | |||
| dataset, | |||
| batch_size=self.batch_size, | |||
| num_workers=self.num_workers, | |||
| collate_fn=self.collate_fn, | |||
| pin_memory=torch.cuda.is_available(), | |||
| ) | |||
| pred_probs = self._predict(data_loader).sigmoid() | |||
| pred = torch.where(pred_probs > 0.5, 1, 0).int() | |||
| return pred.cpu().numpy() | |||
| def predict_proba( | |||
| self, | |||
| data_loader: Optional[DataLoader] = None, | |||
| X: Optional[List[Any]] = None, | |||
| ) -> numpy.ndarray: | |||
| if data_loader is not None and X is not None: | |||
| print_log( | |||
| "Predict the class probability of input data in data_loader instead of X.", | |||
| logger="current", | |||
| level=logging.WARNING, | |||
| ) | |||
| if data_loader is None: | |||
| dataset = PredictionDataset(X, self.test_transform) | |||
| data_loader = DataLoader( | |||
| dataset, | |||
| batch_size=self.batch_size, | |||
| num_workers=self.num_workers, | |||
| collate_fn=self.collate_fn, | |||
| pin_memory=torch.cuda.is_available(), | |||
| ) | |||
| pred_probs = self._predict(data_loader).sigmoid() # B x NC | |||
| return pred_probs.cpu().numpy() | |||
| def _data_loader( | |||
| self, | |||
| X: Optional[List[Any]], | |||
| y: Optional[List[int]] = None, | |||
| shuffle: Optional[bool] = True, | |||
| ) -> DataLoader: | |||
| if X is None: | |||
| raise ValueError("X should not be None.") | |||
| if y is None: | |||
| y = [0] * len(X) | |||
| if not len(y) == len(X): | |||
| raise ValueError("X and y should have equal length.") | |||
| dataset = MultiLabelClassificationDataset(X, y, transform=self.train_transform) | |||
| data_loader = DataLoader( | |||
| dataset, | |||
| batch_size=self.batch_size, | |||
| shuffle=shuffle, | |||
| num_workers=self.num_workers, | |||
| collate_fn=self.collate_fn, | |||
| pin_memory=torch.cuda.is_available(), | |||
| ) | |||
| return data_loader | |||
| @@ -0,0 +1,22 @@ | |||
| from torch import nn | |||
| class SimpleNet(nn.Module): | |||
| def __init__(self, num_features=2048, num_concepts=21): | |||
| super(SimpleNet, self).__init__() | |||
| self.fc = nn.Linear(num_features, num_concepts) | |||
| def forward(self, x): | |||
| return self.fc(x) | |||
| class ConceptNet(nn.Module): | |||
| def __init__(self, num_features=2048, num_concepts=21): | |||
| super(ConceptNet, self).__init__() | |||
| intermidate_dim = 256 | |||
| self.fc = nn.Sequential( | |||
| nn.Linear(num_features, intermidate_dim), | |||
| nn.SiLU(), | |||
| nn.Linear(intermidate_dim, num_concepts) | |||
| ) | |||
| def forward(self, x): | |||
| return self.fc(x) | |||
| @@ -0,0 +1,46 @@ | |||
| # -*- coding: utf-8 -*- | |||
| from ablkit.reasoning import KBBase | |||
| class BDDKB(KBBase): | |||
| def __init__(self, pseudo_label_list=None): | |||
| if pseudo_label_list is None: | |||
| pseudo_label_list = [0, 1] | |||
| super().__init__(pseudo_label_list) | |||
| def logic_forward(self, attrs): | |||
| """ | |||
| Abduction space | |||
| (0, 1, 0, 0) 610812 | |||
| (0, 1, 0, 1) 75012 | |||
| (0, 1, 1, 0) 75012 | |||
| (0, 1, 1, 1) 9212 | |||
| (1, 0, 0, 0) 12996 | |||
| (1, 0, 0, 1) 1596 | |||
| (1, 0, 1, 0) 1596 | |||
| (1, 0, 1, 1) 196 | |||
| """ | |||
| assert len(attrs) == 21 | |||
| green_light, follow, road_clear, red_light, traffic_sign, car, person, rider, other_obstacle, \ | |||
| left_lane, left_green_light, left_follow, no_left_lane, left_obstacle, left_solid_line, \ | |||
| right_lane, right_green_light, right_follow, no_right_lane, right_obstacle, right_solid_line = attrs | |||
| illegal_return = (0, 0, 0, 0) | |||
| if red_light == green_light == 1: | |||
| return illegal_return | |||
| obstacle = car or person or rider or other_obstacle | |||
| if road_clear == obstacle: | |||
| return illegal_return | |||
| move_forward = (green_light or follow or road_clear) | |||
| stop = (red_light or traffic_sign or obstacle) | |||
| if stop: | |||
| move_forward = 0 | |||
| can_turn_left = left_lane or left_green_light or left_follow | |||
| cannot_turn_left = no_left_lane or left_obstacle or left_solid_line | |||
| turn_left = can_turn_left and int(not cannot_turn_left) | |||
| can_turn_right = right_lane or right_green_light or right_follow | |||
| cannot_turn_right = no_right_lane or right_obstacle or right_solid_line | |||
| turn_right = can_turn_right and int(not cannot_turn_right) | |||
| return move_forward, stop, turn_left, turn_right | |||
| @@ -0,0 +1,2 @@ | |||
| torch | |||
| ablkit | |||