| @@ -10,33 +10,16 @@ | |||
| # | |||
| # ================================================================# | |||
| # import sys | |||
| # sys.path.append(".") | |||
| # sys.path.append("..") | |||
| import abc | |||
| # TODO 尽量别用import * | |||
| from .kb import * | |||
| import numpy as np | |||
| from zoopt import Dimension, Objective, Parameter, Opt | |||
| from ..utils.utils import confidence_dist, flatten, hamming_dist | |||
| import math | |||
| import time | |||
| class AbducerBase(abc.ABC): | |||
| def __init__( | |||
| self, | |||
| kb, | |||
| dist_func="confidence", | |||
| zoopt=False, | |||
| multiple_predictions=False, | |||
| cache=True, | |||
| ): | |||
| def __init__(self, kb, dist_func='confidence', zoopt=False, multiple_predictions=False, cache=True): | |||
| self.kb = kb | |||
| assert dist_func == "hamming" or dist_func == "confidence" | |||
| assert dist_func == 'hamming' or dist_func == 'confidence' | |||
| self.dist_func = dist_func | |||
| self.zoopt = zoopt | |||
| self.multiple_predictions = multiple_predictions | |||
| @@ -47,41 +30,42 @@ class AbducerBase(abc.ABC): | |||
| self.cache_candidates = {} | |||
| def _get_cost_list(self, pred_res, pred_res_prob, candidates): | |||
| if self.dist_func == "hamming": | |||
| if self.dist_func == 'hamming': | |||
| if self.multiple_predictions: | |||
| pred_res = flatten(pred_res) | |||
| candidates = [flatten(c) for c in candidates] | |||
| return hamming_dist(pred_res, candidates) | |||
| elif self.dist_func == "confidence": | |||
| mapping = dict( | |||
| zip( | |||
| self.kb.pseudo_label_list, | |||
| list(range(len(self.kb.pseudo_label_list))), | |||
| ) | |||
| ) | |||
| return confidence_dist( | |||
| pred_res_prob, [list(map(lambda x: mapping[x], c)) for c in candidates] | |||
| ) | |||
| elif self.dist_func == 'confidence': | |||
| if self.multiple_predictions: | |||
| pred_res_prob = flatten(pred_res_prob) | |||
| candidates = [flatten(c) for c in candidates] | |||
| mapping = dict(zip(self.kb.pseudo_label_list, list(range(len(self.kb.pseudo_label_list))))) | |||
| candidates = [list(map(lambda x: mapping[x], c)) for c in candidates] | |||
| return confidence_dist(pred_res_prob, candidates) | |||
| def _get_one_candidate(self, pred_res, pred_res_prob, candidates): | |||
| if len(candidates) == 0: | |||
| return [] | |||
| elif len(candidates) == 1 or self.zoopt: | |||
| return candidates[0] | |||
| else: | |||
| cost_list = self._get_cost_list(pred_res, pred_res_prob, candidates) | |||
| min_address_num = np.min(cost_list) | |||
| idxs = np.where(cost_list == min_address_num)[0] | |||
| return [candidates[idx] for idx in idxs][0] | |||
| candidate = [candidates[idx] for idx in idxs][0] | |||
| return candidate | |||
| # for zoopt | |||
| def _zoopt_score_multiple(self, pred_res, key, solution): | |||
| all_address_flag = reform_idx(solution, pred_res) | |||
| score = 0 | |||
| for idx in range(len(pred_res)): | |||
| address_idx = [ | |||
| i for i, flag in enumerate(all_address_flag[idx]) if flag != 0 | |||
| ] | |||
| candidate = self.kb.address_by_idx( | |||
| [pred_res[idx]], key[idx], address_idx, True | |||
| ) | |||
| address_idx = [i for i, flag in enumerate(all_address_flag[idx]) if flag != 0] | |||
| candidate = self.kb.address_by_idx([pred_res[idx]], key[idx], address_idx, True) | |||
| if len(candidate) > 0: | |||
| score += 1 | |||
| return score | |||
| @@ -89,9 +73,7 @@ class AbducerBase(abc.ABC): | |||
| def _zoopt_address_score(self, pred_res, key, sol): | |||
| if not self.multiple_predictions: | |||
| address_idx = [idx for idx, i in enumerate(sol.get_x()) if i != 0] | |||
| candidates = self.kb.address_by_idx( | |||
| pred_res, key, address_idx, self.multiple_predictions | |||
| ) | |||
| candidates = self.kb.address_by_idx(pred_res, key, address_idx, self.multiple_predictions) | |||
| return 1 if len(candidates) > 0 else 0 | |||
| else: | |||
| return self._zoopt_score_multiple(pred_res, key, sol.get_x()) | |||
| @@ -108,7 +90,7 @@ class AbducerBase(abc.ABC): | |||
| dim=dimension, | |||
| constraint=lambda sol: self._constrain_address_num(sol, max_address_num), | |||
| ) | |||
| parameter = Parameter(budget=100, autoset=True) | |||
| parameter = Parameter(budget=100, intermediate_result=False, autoset=True) | |||
| solution = Opt.min(objective, parameter).get_x() | |||
| return solution | |||
| @@ -119,11 +101,7 @@ class AbducerBase(abc.ABC): | |||
| pred_res = flatten(pred_res) | |||
| key = tuple(key) | |||
| if (tuple(pred_res), key) in self.cache_min_address_num: | |||
| address_num = min( | |||
| max_address_num, | |||
| self.cache_min_address_num[(tuple(pred_res), key)] | |||
| + require_more_address, | |||
| ) | |||
| address_num = min(max_address_num, self.cache_min_address_num[(tuple(pred_res), key)] + require_more_address) | |||
| if (tuple(pred_res), key, address_num) in self.cache_candidates: | |||
| candidates = self.cache_candidates[(tuple(pred_res), key, address_num)] | |||
| if self.zoopt: | |||
| @@ -152,18 +130,12 @@ class AbducerBase(abc.ABC): | |||
| if self.zoopt: | |||
| solution = self.zoopt_get_solution(pred_res, key, max_address_num) | |||
| address_idx = [idx for idx, i in enumerate(solution) if i != 0] | |||
| candidates = self.kb.address_by_idx( | |||
| pred_res, key, address_idx, self.multiple_predictions | |||
| ) | |||
| candidates = self.kb.address_by_idx(pred_res, key, address_idx, self.multiple_predictions) | |||
| address_num = int(solution.sum()) | |||
| min_address_num = address_num | |||
| else: | |||
| candidates, min_address_num, address_num = self.kb.abduce_candidates( | |||
| pred_res, | |||
| key, | |||
| max_address_num, | |||
| require_more_address, | |||
| self.multiple_predictions, | |||
| pred_res, key, max_address_num, require_more_address, self.multiple_predictions | |||
| ) | |||
| candidate = self._get_one_candidate(pred_res, pred_res_prob, candidates) | |||
| @@ -177,32 +149,21 @@ class AbducerBase(abc.ABC): | |||
| return self.kb.abduce_rules(pred_res) | |||
| def batch_abduce(self, Z, Y, max_address_num=-1, require_more_address=0): | |||
| if self.multiple_predictions: | |||
| return self.abduce( | |||
| (Z["cls"], Z["prob"], Y), max_address_num, require_more_address | |||
| ) | |||
| else: | |||
| return [ | |||
| self.abduce((z, prob, y), max_address_num, require_more_address) | |||
| for z, prob, y in zip(Z["cls"], Z["prob"], Y) | |||
| ] | |||
| # if self.multiple_predictions: | |||
| return self.abduce((Z['cls'], Z['prob'], Y), max_address_num, require_more_address) | |||
| # else: | |||
| # return [self.abduce((z, prob, y), max_address_num, require_more_address) for z, prob, y in zip(Z['cls'], Z['prob'], Y)] | |||
| def __call__(self, Z, Y, max_address_num=-1, require_more_address=0): | |||
| return self.batch_abduce(Z, Y, max_address_num, require_more_address) | |||
| if __name__ == "__main__": | |||
| prob1 = [ | |||
| [0, 0.99, 0.01, 0, 0, 0, 0, 0, 0, 0], | |||
| [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], | |||
| ] | |||
| prob2 = [ | |||
| [0, 0, 0.01, 0, 0, 0, 0, 0.99, 0, 0], | |||
| [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], | |||
| ] | |||
| if __name__ == '__main__': | |||
| prob1 = [[0, 0.99, 0.01, 0, 0, 0, 0, 0, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]] | |||
| prob2 = [[0, 0, 0.01, 0, 0, 0, 0, 0.99, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]] | |||
| kb = add_KB() | |||
| abd = AbducerBase(kb, "confidence") | |||
| kb = add_KB(True) | |||
| abd = AbducerBase(kb, 'confidence') | |||
| res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) | |||
| @@ -214,9 +175,23 @@ if __name__ == "__main__": | |||
| res = abd.abduce(([1, 1], prob1, 20), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| print() | |||
| multiple_prob = [[[0, 0.99, 0.01, 0, 0, 0, 0, 0, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]], | |||
| [[0, 0, 0.01, 0, 0, 0, 0, 0.99, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]] | |||
| kb = add_KB() | |||
| abd = AbducerBase(kb, 'confidence', multiple_predictions=True) | |||
| res = abd.abduce(([[1, 1], [1, 2]], multiple_prob, [4, 8]), max_address_num=4, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce(([[1, 1], [1, 2]], multiple_prob, [4, 8]), max_address_num=4, require_more_address=1) | |||
| print(res) | |||
| print() | |||
| kb = add_prolog_KB() | |||
| abd = AbducerBase(kb, "confidence") | |||
| abd = AbducerBase(kb, 'confidence') | |||
| res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) | |||
| @@ -230,7 +205,7 @@ if __name__ == "__main__": | |||
| print() | |||
| kb = add_prolog_KB() | |||
| abd = AbducerBase(kb, "confidence", zoopt=True) | |||
| abd = AbducerBase(kb, 'confidence', zoopt=True) | |||
| res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) | |||
| @@ -243,42 +218,55 @@ if __name__ == "__main__": | |||
| print(res) | |||
| print() | |||
| kb = HWF_KB(len_list=[1, 3, 5]) | |||
| abd = AbducerBase(kb, "hamming") | |||
| res = abd.abduce( | |||
| (["5", "+", "2"], None, 3), max_address_num=2, require_more_address=0 | |||
| ) | |||
| kb = HWF_KB(True, len_list=[1, 3, 5], max_err = 0.1) | |||
| abd = AbducerBase(kb, 'hamming') | |||
| res = abd.abduce((['5', '+', '2'], None, 3), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce((['5', '+', '9'], None, 64), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| kb = HWF_KB(True, len_list=[1, 3, 5], max_err = 1) | |||
| abd = AbducerBase(kb, 'hamming') | |||
| res = abd.abduce((['5', '+', '9'], None, 64), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce((['5', '+', '2'], None, 1.67), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce((['5', '8', '8', '8', '8'], None, 3.17), max_address_num=5, require_more_address=3) | |||
| print(res) | |||
| print() | |||
| kb = HWF_KB(len_list=[1, 3, 5], max_err = 0.1) | |||
| abd = AbducerBase(kb, 'hamming', multiple_predictions=True) | |||
| res = abd.abduce(([['5', '+', '2'], ['5', '+', '9']], None, [3, 64]), max_address_num=6, require_more_address=0) | |||
| print(res) | |||
| print() | |||
| kb = HWF_KB(len_list=[1, 3, 5], max_err = 0.1) | |||
| abd = AbducerBase(kb, 'hamming') | |||
| res = abd.abduce((['5', '+', '2'], None, 3), max_address_num=2, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce((['5', '+', '9'], None, 64), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce( | |||
| (["5", "+", "2"], None, 64), max_address_num=3, require_more_address=0 | |||
| ) | |||
| kb = HWF_KB(len_list=[1, 3, 5], max_err = 1) | |||
| abd = AbducerBase(kb, 'hamming') | |||
| res = abd.abduce((['5', '+', '9'], None, 64), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce( | |||
| (["5", "+", "2"], None, 1.67), max_address_num=3, require_more_address=0 | |||
| ) | |||
| res = abd.abduce((['5', '+', '2'], None, 1.67), max_address_num=3, require_more_address=0) | |||
| print(res) | |||
| res = abd.abduce( | |||
| (["5", "8", "8", "8", "8"], None, 3.17), | |||
| max_address_num=5, | |||
| require_more_address=3, | |||
| ) | |||
| res = abd.abduce((['5', '8', '8', '8', '8'], None, 3.17), max_address_num=5, require_more_address=3) | |||
| print(res) | |||
| print() | |||
| kb = HED_prolog_KB() | |||
| abd = AbducerBase(kb, zoopt=True, multiple_predictions=True) | |||
| consist_exs = [[1, "+", 0, "=", 0], [1, "+", 1, "=", 0], [0, "+", 0, "=", 1, 1]] | |||
| consist_exs2 = [ | |||
| [1, "+", 0, "=", 0], | |||
| [1, "+", 1, "=", 0], | |||
| [0, "+", 1, "=", 1, 1], | |||
| ] # not consistent with rules | |||
| inconsist_exs = [[1, "+", 0, "=", 0], [1, "=", 1, "=", 0], [0, "=", 0, "=", 1, 1]] | |||
| consist_exs = [[1, 1, '+', 0, '=', 1, 1], [1, '+', 1, '=', 1, 0], [0, '+', 0, '=', 0]] | |||
| inconsist_exs = [[1, '+', 0, '=', 0], [1, '=', 1, '=', 0], [0, '=', 0, '=', 1, 1]] | |||
| # inconsist_exs = [[1, '+', 0, '=', 0], ['=', '=', '=', '=', 0], ['=', '=', 0, '=', '=', '=']] | |||
| rules = ["my_op([0], [0], [1, 1])", "my_op([1], [1], [0])", "my_op([1], [0], [0])"] | |||
| rules = ['my_op([0], [0], [0])', 'my_op([1], [1], [1, 0])'] | |||
| print(kb.logic_forward(consist_exs), kb.logic_forward(inconsist_exs)) | |||
| print(kb.consist_rule(consist_exs, rules), kb.consist_rule(consist_exs2, rules)) | |||
| print(kb._logic_forward(consist_exs, True), kb._logic_forward(inconsist_exs, True)) | |||
| print(kb.consist_rule([1, '+', 1, '=', 1, 0], rules), kb.consist_rule([1, '+', 1, '=', 1, 1], rules)) | |||
| print() | |||
| res = abd.abduce((consist_exs, None, [1] * len(consist_exs))) | |||